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Abstract

With the Internet of Services, Web services from all areas of life and business will be offered to service consumers.
Even though Web service technologies make it easy to consume services on arbitrary devices due to their platform-
independence, service messaging is heavyweight, which may cause problems if services are invoked using limited
devices like smartphones. To overcome this issue, several adaptation mechanisms to decrease service messaging have
been proposed, however, none of these are the best-performing under all possible system contexts.

In this paper, we present a decision support system that aims at helping an operator apply appropriate adaptation
mechanisms based on the system context. We formulate the corresponding decision problem and present two scoring
algorithms (one Quality of Service-based and one Quality of Experience-based).

Missing data and, thus, an incomplete system context is a serious challenge for scoring algorithms. Regarding
the problem at hand, missing data may lead to errors with respect to the scored adaptation mechanisms. Therefore,
the statistical concept of imputation, i.e., substituting missing data, is used to address this challenge. Based on the
evaluation of different imputation algorithms used for one of our scoring algorithms, we show which imputation
algorithms significantly decrease the error imposed by the missing data and decide whether imputation algorithms
tailored to our scenario should be investigated.
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1. Introduction

The list of advantages of combining Web service technologies and mobile computing is long and compelling:
Most notably, the outsourcing of data- and processing-intensive software tasks from mobile devices to more capable
systems and quick mobile application development through the use of existing software services are two main reasons
for the usage of Web service technologies on mobile devices like smartphones. However, Web service message
formats are characterized by a verbose, self-descriptive nature. On the one hand, this leads to platform-independence
and high interoperability. On the other hand, it renders service messaging heavyweight and is thus not always a good
match for the resource-constrained nature of mobile, wireless devices. Constraints such as limited bandwidth, CPU,
memory, or energy resources, in combination with the communication overhead introduced by Web service standards
like the Web Service Description Language or SOAP, can lead to unacceptable Quality of Service (QoS) and Quality
of Experience (QoE).

Despite technological progress, the gap between devices’s capabilities and connection qualities will continue to
exist. The latest analysis of future wireless technologies strengthens this argument: Sesia et al. [1] define five
categories of user equipment in LTE (Long Term Evolution of 3G mobile networks). According to their analysis,
devices of higher categories will be able to use connection rates up to six times greater than those of lower categories.
Of course, the wired connections of the future will be even faster than that. Furthermore, devices less capable than
smartphones, such as sensor nodes, will be able to consume Web services. So, the big differences in device capabilities
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and connection qualities will maintain the need for adaptation, as the size of the data that is processed and wirelessly
transmitted is growing parallel to all other technological developments [2].

Since the birth of pervasive computing, the adaptation of the communication in order to enhance the QoS of
applications has been one of the biggest concerns in the field [3]. Such adaptations can be performed on different
levels, e.g., on the level of the communication channel, such as in the much investigated “Always Best Connected”
(ABC) issue, or on a “higher” level, as is done during Web content adaptation. Another possibility appears on the level
of software services, where the protocol (or the access method) that is used to communicate with particular services
is adjusted to the system context.

Not surprisingly, a number of adaptation mechanisms for Web services have appeared. Here, an adaptation
mechanism means the re-offering of a Web service with a different protocol or access method, e.g., Wireless SOAP,
JAVA RMI, or SOAP-over-UDP [4]. As shown in our former work [4], the beneficial effects of existing Web service
adaptation mechanisms depend not only on the Web service regarded, but also on the system context in terms of device
capabilities or the network connection. Thus, provided that no single adaptation mechanism is the best-performing
under all possible system contexts [4], an algorithm for decision support that is able to score how well the possible
adaptation mechanisms match the particular context is needed. Different decision support algorithms would have a
different perception of what a “good match” is.

Within this paper, we present two scoring algorithms for decision support, where the first one is based on QoS,
while the second one is based on QoE. These algorithms rely on the use of historical data, i.e., the system context
of former Web service invocations. Quite often, it is difficult to get a complete system context due to transmission
errors, reluctance or inability of the data source to provide the data. Therefore, missing data, e.g., in the form of
incomplete data logs, significantly deteriorates the outcome of a scoring algorithm due to errors with respect to the
scored adaptation mechanisms. In our previous work [5], we have presented first evaluation results of these algorithms
and have identified the need for reducing the serious impact of missing data. Thus, in order to overcome this issue,
we use the statistical concept of imputation, i.e., substituting missing data with other values and evaluate how using
different imputation algorithms for one of our scoring algorithms affects the quality of its scoring results. The goals
of this evaluation are, firstly, to identify which state-of-the-art algorithm achieves the best results and, secondly, to
decide whether new imputation algorithms specifically dedicated to our scenario should be investigated.

The remainder of the work at hand is organized as follows: First, we present some background information
necessary for the understanding of our work, namely the Internet of Services (I0S) scenario applied in this paper,
the Mobility Mediation Layer, and some general information about the usage of proxies for the adaptation of Web
services. In Section 3, we formulate the decision problem which is at the core of our work. Afterwards, we present
the two QoS- and QoE-based scoring algorithms for decision support in Section 4. In Section 5, we introduce state-of-
the-art imputation algorithms addressing the challenge of missing data for our scoring algorithms. These algorithms
are then applied to our QoS-based scoring algorithm in Section 6 and evaluated on the basis of how they affect the
errors of that algorithm. We discuss related work in Section 7 and, finally, conclude this paper in Section 8.

2. Background

2.1. The Internet of Services Scenario

In short, the IoS refers to a globalization of service-oriented solutions, where Web services are offered by different
providers through global services marketplaces. The IoS should be understood as a future scenario for service-
orientation [6, 7]. The realization of the IoS is supported and accelerated by certain enabling technologies, such
as the Unified Service Description Language (USDL) [8], which includes the business and operational aspects in
addition to the technical details, turning Web services into perfectly tradable goods. However, in the context of the
work at hand, more important than the technologies are the features of the IoS that determine how, where, and what
kind of service adaptation can be performed within this scenario:

o Many Web services gathered under single portals: If service marketplaces offer homogeneous and easy access
to a large number of Web services, then particular adaptation mechanisms can be performed at once for many
of them.
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Figure 1: High-level architecture of the Mobility Mediation Layer.

o Less predictable Web service usage characteristics: Traditionally, Web services have been developed for a set
of consumers which has been more or less known a priori. In a scenario where Web services are published as
tradable goods, it is much more difficult to predict under what system conditions the services will be actually
used. For service adaptation mechanisms, this means that they should consider a wide spectrum of different
possible systems contexts.

o Less control or influence over third-party Web services: Another side-effect of the loose relationship between
service providers and consumers is the fact that consumers have little influence on the implementations of third-
party services. This means that adaptation mechanisms that need any kind of modifications in the code or the
hosting system of the services do not come into question in the IoS (cf. Section 7).

As aresult of the last list item, the software that hosts the adaptation mechanisms is expected to lie inside the control
sphere of an IoS stakeholder (e.g., a service broker) other than the actual Web service provider. The most obvious
solution for adapting Web services without access to the provider system is through the generation of proxies in a
mediation layer [9]. An according Mobility Mediation Layer (MML) is presented in the next subsection.

2.2. The Mobility Mediation Layer

The MML has been conceived as a service adaptation layer that suits the IoS scenario, i.e., it has been designed for
working with service marketplaces that give access to various services, it assumes no access to the implementations or
the hosting systems of the services, and it focuses on the types of adaptation that are dictated by the needs of mobile
devices. Such a layer could be operated by a service marketplace host that desires to offer services with different
access methods or communication protocols, by a mobile application developer that desires to adapt the way services
are consumed by the developer’s application, or by any stakeholder that has the business model of offering enhanced
access to existing third-party services.

Figure 1 shows the high-level MML architecture. As abstractly shown in the figure, the goal of the MML is to
provide clients with limited resources or mobile clients with an interface to services which are hosted on various exter-
nal providers and are made available through global service marketplaces, while mediating the service consumption
by performing various adaptation mechanisms. Although the MML has further capabilities (e.g., automatic context
enrichment), we focus in the work at hand on the overhead reduction through the generation of proxies. Some initial
ideas and the first high-level architecture of the MML can be found in [10].

Figure 2 shows that Web services can be consumed either directly or through different proxies. To implement this,
the MML uses a Web Service Proxy Generator, a software component which performs automatic code enrichments
and deployment actions upon the code generated for the target service.

3



Wireless
Network /
A

Wired / l MOBILITY MEDIATION LAYER
Network I
| WS- WS8;- WS,- WS- Output Proxy Input_~ Service
\ Proxys [, .| Proxym Proxys [ .| Proxym <: Generator Description
\ f >
\
\
\ <« — —p»  Wireless connection
4 WS4 I WS, e e s s mEEmEnE WSk <4———»  Wired connection
_——— Networks' border

Figure 2: Simplified view of the Mobility Mediation Layer proxying concept.

The MML can, of course, be accessed by all types of clients. However, its target group are mobile and wireless,
often limited, Web service clients. Thus, these clients can substitute their direct Web service calls with mediated calls
through the MML. For this, service calls are handled by an according MML Interface and then executed. During call
execution, information about services and existing Proxies (cf. Figure 2) is retrieved. In order to know how to best
mediate the communication, the MML also includes mechanisms for the monitoring (and logging) of the performed
mediated Web service calls. However, it is often difficult to know all the details of a call. For example, information
about the calling device must have been reported by itself (which is not always the case), while information about
the network, e.g., packet loss, may not be known for all the used connections. This monitoring difficulty is important
for the present work, as the following chapters will focus, among other matters, on such missing data. Furthermore,
automated context enrichment may be conducted through the Context Adapter. The actual call of the external Web
service is then performed by a proxy, which may vary from a simple “dummy” request/response forwarder to the
enforcer of a certain adaptation mechanism. Finally, the MML accesses service descriptions and other service-related
information from the IoS through its loS/Marketplace Connectors. Some of the MML components can be derived
and/or are inspired by abstract components of general-purpose QoS-middleware concepts such as the one of [3].

2.3. Using Proxies for Web Service Adaptation

Proxying is an abstract concept that implies the interception of requests and it may be used in many different
fields. In our work, a Web service proxy is a module of the MML that can intercept the calls to a particular external
Web service in order to enforce an independent and well-defined adaptation mechanism. More concretely, as depicted
in the simplified view of Figure 2, Web service proxies have the following mission: They try to avoid heavyweight
communications taking place over the wireless channel by replacing direct calls (long dashed arrow in Figure 2) of
wireless service consumers to Web services with proxied service calls. The latter consist of two parts: a wireless call
(short dashed arrow in Figure 2) to the proxy and a wired call (short direct arrow in Figure 2) from the proxy to the
Web service. As a proxy enforces an adaptation mechanism, the wireless call is expected to be more lightweight, i.e.,
to be completed by exchanging less data, while the wired call normally uses exactly the same data exchange as the
original direct call (long dashed arrow in Figure 2) would. Multiple proxies may exist for the same service and enforce
different adaptation mechanisms, i.e., in the context of this work the usage of an access method like SOAP-over-UDP
or Wireless SOAP (cf. Section 3). Of course, the adaptation mechanisms presented here are not middleware- or
proxy-specific and could lie inside any other similar layer.

It must be noted that the Web service proxies could be implemented manually. However, such a manual implemen-
tation requires some development effort for every individual proxy generation. Instead, our work aims at automatic
Web service proxy generation that is based on the service descriptions. Once implemented, it can be used for as many
proxy generations as desired. The automatic proxy generation is based on a novel process that: (a) creates proxy code
by parsing the service description, (b) adjusts and enriches the created code according to the desired type of proxy,
and (c) transparently deploys the generated proxy, offering it as a new service that runs on the MML but can address
the original service.



Table 1: Characteristics of the possible adaptation mechanisms. The complete table can be found in [4]. Again here, s (=small), m (=medium), and
h (=high) are ordered categorical values with s < m < h, so that, for example > m means “m or h”, “= refers to values that are either unknown or
unimportant.
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3. Formulation of the Decision Problem

As mentioned in Section 1, there is no generally applicable best adaptation mechanism, which would fit all cases
in terms of device capabilities, network connection, or the actual service (system context). Thus, decision support
based on a scoring algorithm is needed. Such an algorithm determines how adequate an adaptation mechanism (i.e.,
its corresponding proxy) would be for each known service for a particular system context. Our according research
question is “Which proxy should be generated/activated for each Web service under the current system context?”.

As a first step towards answering this question, we analyzed possible adaptation mechanisms (access methods)
for Web services according to the conditions under which they are expected to achieve their maximum benefit in our
previous work [4]. Table 1 shows an excerpt of the results. For example, as shown at the bottom of the table, a
Compression proxy is adequate when the bandwidth is small (s), the CPU power of the device is medium (m) or high
(h), and the message sizes of the Web service are also medium or high. The lines of this table already look like rules
for the generation of proxies, but they are far from being deterministic for the decision process, as other factors may
come into play, such as weighting, different goals or utility functions, user feedback etc.

The decision problem handled in this work is referred to as Always Best Served (ABS), in accordance with the
well-known and much investigated Always Best Connected (ABC) problem [15, 16]. ABS is a problem similar to ABC
which appears when moving up in the OSI model [17], from the network layer to the transport and session layers.
There, instead of access networks, access methods to Web services have to be selected. In short, while ABC scores
available access networks, ABS scores possible proxies [5]. Appearing on a different layer, ABS needs partially dif-
ferent context information [4]. Depending, firstly, on the granularity with which the context information can be rated
and, secondly, on how deterministically the context pinpoints the appropriate alternatives, certain approaches may be
adequate for solving the one problem, but not the other. Furthermore, the conditions that make a proxy adequate for
use have been researched to a much lesser extent than the conditions that render access networks adequate. Because
of the time required for the proxy generation and because of the complex logic that would be otherwise needed on the
client-side, the decisions in ABS are normally not taken per device and on-the-fly (or “real-time”) for particular tasks,
but they rather refer to (and affect) a set of devices. As a result, it is less meaningful to talk about optimization in the
case of ABS. The reason is that in ABC, a device may have all the information that it needs in order to optimize the
selection of an access network for a given action. In ABS, a proxy is generated for future usage and for many devices,
the exact characteristics of which are unknown.

The outcome of the ABS problem, i.e., the scoring of the alternative proxies can be used for various purposes. For
instance, the scores may be seen as suggestions to system operators or they may be used for the automated triggering
of proxy generations. These diverse ways of exploiting the scores are outside of the scope of this work. Instead, the
scoring algorithms are assumed to be part of a general-purpose decision support system. The latter is provided with
information about the proxy characteristics and about the past Web service usage, and is expected to suggest how
suitable each proxy would be for a service.

The problem that is to be formulated, and finally solved by a scoring algorithm, consists of exact descriptions of
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Table 2: Possible proxies and their characteristics.
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Table 3: Monitored Web service call records and their characteristics.
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the input and the expected output. Related descriptions and definitions are provided in the following.

3.1. Input
With respect to the nature of the data that shall determine the proxy scores, and taking the involved entities and
attributes, their possible values, and the missing data issue into account, the following sets and variables are defined:

e P, as the set of possible proxies, with the elements p; € P,i € [1,N],i € N, where N is the number of possible
proxies.

e R, as the set of Web service call records (i.e., monitored Web service invocations), with the elements r; € R,i €
[1,K],i € N, where K is the number of records.

e A, as the set of attributes used for characterizing the elements of P and R, with the elements a; € A,i € [1,11],i €
N. A has 11 elements, corresponding with the context attributes derived from the analysis in [4] (cf. Table 1).

e V, as a set of values v indicating the requirements of a proxy p; on an attribute a; in order to be adequate. The
values v were chosen with the minimum granularity necessary for the problem regarded within this work [4]. In
short, the three discrete categorical values small (s), medium (m), and high () have been used for each aspect;

u denotes an unknown value. Thus, v € V := {s,m, h, u}.
6



Table 4: Example output of a scoring algorithm.

P1 D2 e PN
s; | 0.1 | 067 | ... |-0.55
so | 033 | -05 | ... 0.8

s, | EB | e€eB|eB| €B

e T, as a set of thresholds, namely T := {<, >, 0} X V, required for denoting thresholds based on these values.

e S, as the set of known external Web services, with the elements s; € S,i € [1,L],i € N, where L is the number
of Web services.

Table 2 and Table 3 visualize the defined sets and variables, providing example instances, as well as indicating the
value ranges. Note that while the attribute values of the elements of R (cf. Table 3) are always elements of V (except
for the last column where the chosen proxy is indicated), the values of the corresponding proxy features (cf. Table 2)
are expressed with the help of the same values, but they are accompanied by the symbols < and > (except for the
unknown value u which does not such a symbol). The extra attribute a;; used in Table 3 indicates which proxy has
been selected for the recorded service invocation and shall only be relevant when user choices are considered, i.e.,
when applying a QoE-based scoring. The information contained in these two tables is the input to be given to a scoring
algorithm.

3.2. Output

What is needed as output is a set of scores, each score corresponding to a service-proxy pair (s;, p;). The range
and the meaning of the scores themselves depend on the algorithm that calculates them. Thus, the range of scores is
abstractly defined here as B := [Dyin, Dinax], With by, bax € R. The scores of different algorithms are not directly
comparable. However, normally, the bigger the score, the more suitable the proxy for the respective service. Table 4
visualizes an example scoring output for b,,;,, = —1 and b,,,, = 1. As already explained, the exact way in which the
mediation layer (or its operator) uses these scores, is open and outside of the scope of this work.

4. Scoring Algorithms for the ABS

In general, decision problems are defined as problems that can be answered with yes or no. Decision algorithms
are the according algorithms used to solve them. The basic methods and the tools for developing such algorithms
can be found in the fields of statistics, machine learning, and operations research [18, 19]. Optimization problems,
Bayesian statistics, and decision trees are examples of such basic methods.

We propose two scoring algorithms, namely a QoS- and a QoE-based one. QoS, in the context of our work refers
to a set of technical aspects such as performance, flexibility, scalability, reliability, and more, which can be used for
characterizing the overall quality of a system, service, or application. For each of these aspects, case-specific metrics
can be defined as it has been done in Section 3.1. In contrast, QoE refers to a set of user-related aspects such as
opinion, satisfaction, QoS-perception, and more, which can also be used for characterizing the overall quality of a
system, service, or application. Obviously, QoE depends on QoS, but it measures the effect that the QoS metrics
have on the user. User ratings or user choices as foreseen in Table 3 (column “Chosen proxy (a;;)”) are examples of
possible QoE metrics.

In accordance with the definitions of QoS and QoE, two principally different categories of scoring algorithms
can be developed for decision support. A QoS-based scoring algorithm would rate each proxy by comparing its
characteristics (cf. Table 2) with the monitored service call records (cf. Table 3) in order to see how well the proxy
matches the respective invocations. A QoE-based approach would focus on past user decisions, i.e., it would perform
the scoring by analyzing the relationships between the values of the parameter a;; (“chosen proxy”) and the values of
the other attributes.



Both decision algorithms need to solve the problem as formulated in Section 3 and deliver meaningful results.
Their logic is intuitively derived from the characteristics of the ABS problem in terms of used context attributes, in-
volved value ranges, etc. The latter are determined by the granularity of the results of our survey on service adaptation
mechanisms [4]. The correspondingly developed scoring algorithms are described in the following.

4.1. Quality of Service-based Scoring Algorithm

As is usually the case in QoS-related theory, the proposed QoS-based algorithm uses a utility function for the
scoring of the different options. This utility function is based on the idea of calculating distances of “ideal” and
“actual” conditions, in order to measure “how far” each proxy’s optimal setting is from the actual technical setting.
The decision for this approach was driven by the fact that both the service call records and the proxy characteristics are
already in a vector-like form with ordered symbols (s, m, h) as values. This makes their distance-based comparison
easy and meaningful. As this is done for each element of R, the results are then aggregated to a total score of each
proxy for a given service. Thus, a utility function n,,(r;) € R must be formulated.

Let R, C R be the set of service call records of service s; and Ny, , be the set of scores that result from the
application of the utility function for p; upon Ry,. Thus, Ny, ,, contains the values of n,(r;) for which r; € R,. Let

Nf, ={tlx € Ny Ax>0} and Ny, :={xlx €N, Ax<0} (1)
then p* := Won! _ W] is the quota of calls that would result in a positive score for this prox
P = Wl T TRy q p proxy.

Lety € [0,1], v € R, be the minimum acceptable threshold for p*, 8 := max{0,p" — y} be the maximum of
either the positive distance of p* to the threshold y or 0, and 7 := 1% be the ratio of this distance to the threshold of
acceptable values for p™.

Then, the scoring function is

0, ifb=0
FRS,P s p) = 6(m NG 1) x Y NG, +6(1=mIN, ) x DN, with 6(a,b) = {%’ stherwise
Explanation: The above description explains how results of single records are aggregated; y is only used for cus-
tomization purposes. When the ratio of positive results is lower than vy, the positive results are ignored and only the
negative ones are accumulated. If the ratio of positive results is between y and 100%, the values of positive and neg-
ative results are weighted and summed up as the result. For example, v could be 0.6 for a minimum of 60% positive
results, while y = 0 means that no lower limit for the positive results is set.

Next, it must be defined how the utility function n,,(r;) € R works for single records. For each proxy, there is a
description that consists of a set of conditions, i.e., thresholds (cf. Table 2). Let ¥ be the set of attributes {a, ..., a0}
and t,,(x) € T be the threshold of p; for the attribute x € ‘¥'. The set of attributes is not denoted with A here, because
ay is missing, so that ¥ # A. Further, we specify #; to be the first element of (the tuple) 7,,(x), i.e., the operator <,
>, or 0. Analogously, #, indicates the second element of #,,(x), i.e., the value s, m, h, or u. For instance, regarding
proxy p; and attribute a, in Table 2, 1, (a2) = (=,m), t; = 2, to = m. For ease of use in the function to be defined,
the symbols are mapped to integers using the function z(v), which takes values v € V' \ {u} as input. For the different
values v € V \ {u}, the mapping is specified as follows: z(s) = 1, z(m) = 2, z(h) = 3. Using this mapping makes
sure that the defined order (small, middle, high) is maintained. As previously stated, the symbol u is a special case,
describing the fact that the attribute value is unknown, hence a mapping to an integer is not necessary.

Fort,(x) e T andv € V, let

0, ifty=u
min (S,t ,-)» (h’l i) 5 ifv=u

o, tp,) = {‘P pi)» UL Ip } ' 3)
z2(v) — z(t2), if t; =>
2(t2) — z(v), iff; =<

Explanation: The function ¢ takes a tuple of values, i.e., a value v € V and a threshold ¢,,, for a proxy p; and calculates
the distance between the two. This is done by mapping the values to numbers, and then calculating the difference.
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The difference must be positive if the value matches the threshold, negative otherwise. Positive differences have the
meaning that the condition is satisfied. For example, an & value of an attribute where the condition is > m gives a
positive difference of +1. Although, for instance, a value m for a threshold > m is also a match, the function ¢ would
give “zero” as a result. For this reason, all individual results of the function ¢ that have constituted a match will be
later augmented by 1 by the utility function n,, (cf. Equation 4). These are all the positive results, but also all the
“zero” results that have not been caused by an unknown threshold. If the value v is u, the function ¢ assumes that u
could be any value of {s, m, h} and thus calculates the minimum difference, so that no positive proxy suggestions are
made “by accident”. In case the threshold is u, the difference is zero.

If there is a match for a record r; for all attributes, then its single score is the sum of the value to threshold
distances of each attribute. Otherwise, the negative score is calculated as the sum of the value to threshold distances
of parameter values not meeting the threshold. Thus, the utility function is defined as

a {%) X 2ixew Lotrjo.a, (<0 = @(rj(x), (X)), if Ayep(ri(x),1,,(x)) <0
np,(rj) := {4 )

1+ }%}71) X erxy I‘P(rj(x)q,pi(x)»o . go(rj(x), tpi(x)), otherwise

1, if f=true
with 1,:= and )= _
! {0, OtherWiSS ll(p ) ;P tp;( )#

Explanation: If all thresholds are met, the proxy can certainly achieve benefits. This is the only case where the utility
function assigns a positive value. Otherwise, it assigns a negative value. Obviously, proxies could offer benefits even
when their score is zero or negative. Assigning positive values (as a result of the utility function n,,(r;)) only to perfect
matches is just one feature of the algorithm, which aims at giving positive values only when the benefit is a certainty.
The resulting scores of the different possible proxies are probably going to be compared relatively, anyway. In all
cases, the result is normalized by being divided by the number of values that are not u.

4.2. Quality of Experience-based Scoring Algorithm
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(a) Example Conditional Probability Tables of the variables of a (simple) Bayesian Network to be used (b) Four example

in Step 2. records  for  the
examined service to
be used in Step 3.

Figure 3: Examples for the illustration of the QoE-based scoring algorithm.

Because users have their own subjective selection criteria, a different indicator of the suitability of the proxies is
possible. In QoE-based approaches, this indicator is based on user feedback, which can be explicit or implicit. The
algorithm presented here uses past user decisions (i.e., user choices of proxies as foreseen in Table 3) as implicit
feedback and calculates a “proxy suitability indicator” as its probability to be selected by the users in the future, if all
proxies for this service exist. As the algorithm that calculates this probability should use part of the data in order to
“learn” past user behavior and part of it in order to set evidence about the service that is examined each time, machine
learning techniques are an obvious choice. In particular, an algorithm based on a Bayesian Network (BN) has been
developed, because BNs match the problem for two main reasons: First, they do not only classify cases (as, e.g.,
simple decision trees do), but they compute probabilities, as needed for a detailed proxy scoring. Second, they are
an appropriate approach for setting evidences about future attribute values, which has to be done for every examined
service [18].



The idea is to let the algorithm learn about a given service by examining the past user behavior upon “similar”
services which had been offered with all proxies. Two services s; and s, are similar if a;(s;) = a;(s2), Vi € {6,7, 8}
(cf. Table 3), because ag, a7, and ag are the service-related attributes. The variables that are likely to determine the
user selection are included in the BN, together with the variable about the user selection itself (a;;). These are the
variables that are most probably known to the user, e.g., {ay, as, ag, ajo}. Summarizing, the following is done in order
to assign each proxy a score for a given service:

e Step I: A logical BN structure is manually built, showing which attributes affect the user decision. Manual con-
struction is preferred instead of learning the structure from test data, because the causal relationships between
the attributes are more or less straightforward. As [20] explains, in this case, the BN structure should be created
manually by placing the causes before the effects.

An example for a simple BN structure would be the following (used as the basis for Figure 3): ay; is influenced
only by a; and as, while a; and as are, again, related.

e Step 2: The records of similar services are analyzed in order to find out how users decided before (generation
of the Conditional Probability Tables of the BN). Figure 3a shows example probability values for the variables
used in a simplified version of the suggested BN. Here, for example, P(a;; = pslas = h,a; = m) = 0.8. These
tables are learned by analyzing the history of the services that are similar to the examined service.

e Step 3: The records of the examined service are analyzed in order to find out how the service is likely to be used
in the future (Evidence in the BN). The Conditional Probability Tables generated in Step 2 are used together
with the Evidence in order to answer questions of the kind “what is the probability that a user selects the proxy
px to invoke the service s;?”. With respect to our example, a;; is the query variable, while a; and as are the
Evidence variables. At this step, Evidence (E) is gathered for the Evidence variables by analyzing the monitored
service call records of the examined service as shown in Figure 3b (of course, Evidence has to be gathered from
a much higher number of records). Then, the evidence state would be: e = (P(a; = s) = 0.75,P(a; = m) =
0, P(a; = h) = 0.25, P(as = s) = 0.25, P(as = m) = 0.25, P(as = h) = 0.5).

e Step 4: Once the Conditional Probability Tables and the Evidence have been calculated, the BN is used in order
to infer the probability of each proxy to be used for the examined service during the next calls. This probability
is the final score of the proxy.

Given the Conditional Probability Tables and the Evidence state in our example as described above, beliefs for the
probabilities of the query variable can be inferred based on basic probability theory rules. For example, P(a;; =
pilE = e) = P(ay1 = p1,E = e)/P(E = e). This would be then also the final score for a;;.

5. Imputation Algorithms

The monitoring data necessary to apply QoS- and QoE-based decision support is not necessarily always complete,
in fact it is expected to be incomplete in our envisioned scenario (as discussed before). Dealing with incomplete
information and uncertainty is mentioned as an important research challenge of self-adaptive systems in both [21]
and [22], which are the most recent research roadmaps for self-adaptive systems. As the data missingness problem
is well-known in other research areas, especially in the data analysis community, which has introduced a number
of imputation algorithms in order to decrease the negative influence of data missingness. In the following, we will
briefly introduce the theoretical foundation for the inclusion of data imputation algorithms in our work based on
[23, 24, 25, 26].

Assume a dataset U of data units U(n) and size N (n € [1,N],n € N). Each data unit consists of J attributes
J» j € N. Thus, each tuple (n,j) describes one variable, with the value U(n, j) = w, n € [1,N], j € [1,J], from a
predefined set of values W(}j) for each attribute. For modeling missing data inside such a dataset, the fact that a value
could not be obtained needs to be stored. Hence, for each variable U(n, j), an indicator variable r(n, j) can be added,
which is set to 1 if the value is present, O otherwise. r(j) denotes the set of r(n, j) for all n € [1, N] and » denotes the
set of r(j) for all j € [1, J]. The missing values of variables of a dataset are also referred to as missingness.

The properties of missingness can be specified further by looking at what is called the distribution of missingness,
that is, the distribution of the r(j). Let:
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e U,ys(j) be the variables of attribute j where the values could be obtained (or observed), that is, r(n, j) = 1 for
all elements of U,y;.

e U,:s(j) be the missing values, i.e., r(n, j) = 0 for all elements of U,,;;. Hence U = U,pg U U,pis, Upps N Upis = 0.

Different types of data missingness can be differentiated. For this, the relation of U, and U, to the distribution of
missingness is taken into account. In the following, we will give a brief overview of different classes — for a more
detailed description, especially with regard to probability theory, we refer the interested reader to [25]:

e The class Missing Completely at Random (MCAR) includes the cases where the distribution of missingness is
independent of U, and U,,;;. That is, the distribution of the observed and the missing values have no influence
on the missingness.

o Missing at Random (MAR) is a class of cases where the distribution of missingness depends on observed values,
but not on missing values. For a single random variable, that means that its missingness distribution may depend
on values of some other random variable, but not on its own.

e Missing Not at Random (MNAR) denotes distributions of missingness that are neither MAR nor MCAR. That
means that the missingness might be associated to any other values, missing or observed.

The ABS problem involves the use of discrete categorical data with a very restricted value range. This fact may
affect the importance of particular statistical properties (e.g., mean values, standard deviation) used by imputation
algorithms. Furthermore, ABS presents its own types of missingness, which is not expected to be MCAR. In fact,
monitored records are rather expected to have dependencies which may be explicitly or implicitly caused by scenario-
specific properties such as: “More capable devices are expected to use better connections”, “Records from better
connections are expected to include less network-related missing data”, etc. The possibilities that the monitored data
have such characteristics will be analyzed in more detail and reflected in the evaluation test cases.

Different approaches have appeared for handling missing data. Most of them fall under the category of “imputation
algorithms”, because they substitute missing values with other values, which are expected to be close to the original
ones or to affect the further data processing as least as possible. Some of the most commonly used approaches are
summarized here, while one of the most complete lists of such approaches can be found in [27], along with more
detailed descriptions of the underlying mathematical models.

1. Case Deletion is an approach according to which data units that miss values are removed from the data set, i.e.,
for all n € [1, N]: if 3} e, r(n, j) < J, then U(n) is removed from the data set.

2. Modus Imputation is an approach according to which the value that appears most frequently among the observed
values of an attribute (rmodus) is used in order to replace all the missing values of that attribute. Mean Imputation
is a similar approach, which uses the arithmetic mean instead of the modus.

3. The Random Hot Deck approach replaces missing values with an observed value that is randomly chosen from
the current dataset.

4. Distance Function Matching is an approach based on the calculation of distances between data units. The logic
is similar to that of Random Hot Deck, but the value is chosen with higher probability from data units that lie
spatially or temporally close to the data unit of the missing value. In the deterministic variation of the approach,
the value “closest” to the missing one is always used for the replacement.

5. Multiple Imputation is considered to be state-of-the-art among the approaches that are based on the maximum
likelihood concept. With Multiple Imputation, standard statistical methods are applied repeatedly in order to
calculate estimates and confidence intervals of the examined variables, so that a certain degree of uncertainty
exists during the replacement of missing values and certain statistical characteristics, such deviation, are not
lost from the final dataset.

In ABS, scenario-related scoring algorithms should run upon the imputed data. The nature of the algorithms that run
upon the handled data is also critical for the efficiency of an imputation algorithm. It must be noted that imputation
algorithms may be evaluated either by measuring how correctly they recover missing values or by measuring how well
they eliminate the effect of missing data on an algorithm that uses the data after the imputation. It is not necessarily
true that imputation algorithms which perform better with respect to the first criterion (i.e., perform a more exact
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guessing), also minimize the error of the final result (i.e., after some algorithm runs upon the imputed data). The
authors in [27] state accordingly that “it is probably a popular misunderstanding that the goal of imputation is to
predict individual missing values”.

It can be rarely judged without further experiments which approach best suits a given problem, because the success
of imputation depends on the characteristics of the missingness, on the values of the dataset, but also on the nature
of the problem and on the algorithms that will run upon the dataset after the imputation, i.e., our scoring algorithms.
Hence, the goal of our evaluation (cf. Section 6) is the application of the five presented imputation algorithms in ABS,
in order to examine, firstly, which state-of-the-art solutions should be preferred and, secondly, if the investigation of
new imputation techniques tailored to the ABS scenario is worthwhile.

6. Evaluation

In previous work [5], first evaluation results for both the QoS- and the QoE-based scoring algorithm have been
presented showing that missing data have a severe impact on them, thus, must be addressed. Therefore, we focus here
on the comparison of imputation algorithms and apply these to the QoS-based scoring algorithm.

First of all, this is due to the space constraints we have to meet while presenting a thorough and complete eval-
uation. Furthermore, we consider the QoS-based scoring algorithm to be more representative for handling the ABS
problem because it takes into account all context attributes (and not only those that may affect the user’s choice), it is
more directly based on the survey results, it is more intuitively derived from them, and because QoS-approaches are in
general less subjective and probably more widely used in the domain of networks. The QoS-based scoring algorithm
also uses a straightforward logic and only a few steps for the calculation of the scores. Thus, it seems to introduce less
“noise” than the QoE-based algorithm (or similar algorithms) with regard to the effect of missing data. For example,
as shown in the experimental results of [5], the effect of missing data in the case of the QoE-based algorithm may
depend heavily on the number of the available Web service call records, because a minimum amount of records is
necessary in order to “learn” the user behavior efficiently.

For the case of handling the ABS problem with the presented QoS-based scoring algorithm, five imputation algo-
rithms are compared in six different test scenarios, in order to investigate which one minimizes the error caused by
missing data. We make use of “No Imputation™ as a baseline and compare the five imputation algorithms against it.
The algorithms that have been examined are those that have been listed as state-of-the-art imputation algorithms in
Section 5. These algorithms cover different classes of algorithms and are often used in similar work [27].

6.1. Test Scenarios

The current evaluation considers six scenarios for building the test datasets. More concretely, two ways for gen-
erating complete test data (without unknown values) and three ways for “inserting” unknown values into them have
been used, resulting in six different combinations concerning the way the final datasets are generated. These combi-
nations are called fest scenarios. The data themselves, before the insertion of missingness, have been generated in the
following two ways: Firstly, random, where all values of the attributes of the Web service call records are generated
randomly and secondly, scenario-based. There, scenario-related assumptions are used for data generation, so that
randomly generated attribute values have an effect on the probabilities of particular values for other attributes.

After that, missingness is inserted into the generated complete data sets with one of the three following methods:

e Random: Randomly selected values of the complete data set are marked as unknown (u).

e Unreliable data sources: The insertion of unknown values is based on an analysis of the sources that nor-
mally monitor or collect the respective data. The attributes are divided into those that can be measured by the
mediation layer and those that are potentially known only by the service consumer itself.

e Unreliable data collection: The previously described way of inserting missingness is extended here by taking
into account not only the sources of the data, but also their collection and transmission.

The exact probabilities and correlations have been chosen in a way that all cases end up having a missingness of ca.
25%, in order to obtain comparable results. The exact values are not critical, as it should first be determined whether
the different scenarios affect the efficiency of the algorithms at all.
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6.2. Metric

The metric used for the comparison of the examined imputation algorithms is the error imposed by the missing
values on the result of the scoring algorithm. The way the application of the imputation algorithms reduces this error
will be examined. As there are different ways for defining error metrics, a series of formal descriptions is provided,
not only in order to mathematically define the used error metric, but also in order to provide a better understanding
of the steps of the conducted measurements. References are also made to the symbols and definitions of Section 3,
including the sizes of the sets defined therein.

A dataset D € VI®¥l is a matrix that contains the values of the attributes of the monitored Web service call records
(cf. Table 3), G is the set of the (two) data generation scenarios, M is the set of the (three) missingness scenarios, H
is the set of the examined imputation algorithms (as well as the “No Imputation” approach), and I is the set of the
performed repetitions of the experiment. Then:

e The set of the test cases, each of which is going to be repeated |/| times, is TC = G X M X H.

e Forielandtc e TC, D, : I x TC > VIRXWl ig the dataset resulting from the i-th iteration of the test case fc.
For each such dataset, a reference dataset exists, which is used for the calculation of the error. This reference
dataset refers to the respective case without missingness and without imputation, such that it is denoted as
Dy, : 1 x G —> VIR¥AI where b, simply denotes the reference test case of the test case c.

e Thus, safely abstracting from any other information used by the scoring algorithm, the scoring function (f) can
be defined as a function that maps a dataset to a matrix of scores for the service-proxy pairs (remember that B
is the range of scores that can be assigned): f(D) : VIRXAl — (B c R)SXI,

e The error (e) of a scoring output is calculated as the difference between this scoring output and the scoring
output for the respective reference test case. This error is calculated for all test cases. Thus:

e(Dise) = 1f(Dip) = fFDise)l » e(Dyge) : VRS VIRXAL 5 10, By = b ]! ®)

o The final metric is the above error normalized by the observed range of its possible values and calculated as
percentage of this range. This metric represents the extent (in percent) to which the missing data affects the
scoring output and is the variable that will be plotted in the results of Section 6.3. Thus, the final metric is:

Di c
enorm(Di,tc) = b,e(—’[? X 100% (6)

max — Ymin

The average values and the standard deviation of e,,,, can be calculated and used for the comparison of the imputation
algorithms. Different error metrics could have been used, e.g., comparing the changes in the ranking of proxies caused
by missing data. However, the scores are supposed to be suggestions. Therefore, the errors of every individual value
are equally valued, which leads intuitively to the use of the calculation of differences.

6.3. Results

The main software program for the evaluation has been implemented with the Java programming language, while
for the tests of the Multiple Imputation algorithm, the external statistics program R! has been integrated. The Multiple
Imputation implementation that is used in R is described in [28].

The experiments have been performed with |[R| = 10000, as this size is big enough for eliminating effects of luck in
single repetitions and can still be processed in reasonable time. Similar is true for the amount of services that appear
in the records (six have been used), while the rest of the information needed by the QoS-based scoring algorithm
(proxy characteristics) is taken directly from the survey results of [4]. Each test case has been repeated ten times (i.e.,
|7] = 10). This number of repetitions has been enough in order to achieve sufficiently small confidence intervals for
the average errors, as will be seen in the results.

"http://www.r-project.org (Last accessed in July 2012).
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Figure 4: Average normalized errors of the imputation algorithms for each test scenario. SS = scenario-based data, missingness from unreliable
data sources; SC = scenario-based data, missingness from unreliable data collection; SR = scenario-based data, random missingness; RS = random
data, missingness from unreliable data sources; RC = random data, missingness from unreliable data collection; RR = random data, random
missingness.

Concerning general system features but also specific details of the proxy-based adaptation scenario, it is important
to understand the underlying assumptions for understanding the results. A basic assumption is that the mediation layer
has limited capacity and/or is concerned with security. Otherwise it could generate all possible proxies. Every new
proxy needs some resources and means the opening of new interfaces/ports on the mediation layer. So, it is obvious
that not every possible proxy can be generated for the arbitrary large number of services of the IoS. Furthermore, the
fact that the proposed algorithms are tailored to the characteristics of the results of the related survey (i.e., the survey
presented in [4]) supports the argument that they provide an educated scoring. This is also one of the reasons why
they are not directly compared to alternative scoring algorithms. Therefore, the correctness of the methodology used
throughout the survey, but also of the results of the survey, is a requirement for the scoring algorithms to be considered
useful. With respect to this survey it has also been avoided to include device details, which may change from year
to year or from a release of a mobile operating system to the next one, and has focused on always-important system
contexts. However, it may occur that particular clients are incompatible with certain proxies.

The results, i.e., the average values and the corresponding (99%) confidence intervals of e, for the examined
imputation algorithms in the six different test scenarios are presented in Figure 4. The observations that can be made
based on these results do not only relate to the efficiency of the examined imputation algorithms, but also to the
meaning of the standard deviations and the confidence intervals that appeared in the results and to the meaning of the
differences (or similarities) between the results of the different test scenarios.

Three of the imputation algorithms, namely Case Deletion, Random Hot Deck, and Multiple Imputation, deliver
the best overall results, minimizing the error caused by missing data in the scoring output. This is common in all the
results and the statement cannot be affected by the deviations that appear, because the named algorithms present, in
all cases, an error of under 2.5%, which is comparable only with best-case errors (outliers) of the other approaches,
while the average errors of the latter are usually many times higher. Among the best approaches, Multiple Imputation
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seems to have the smallest average error, but without statistically significant differences (i.e., not always and with
overlapping confidence intervals). Reminding that the results are used for decision support, the errors of all three best
algorithms are in any case so small that their application should be sufficient for the majority of the scenarios that
can possibly appear. As the error cannot get much smaller, it makes little sense to search for new, problem-specific
imputation algorithms, unless a particular scenario with extreme requirements about the examined error appears. The
authors of this paper cannot think of such a scenario. Therefore, the choice should normally be between Case Deletion
and Random Hot Deck, in order to avoid the (implementation- and time-) complexity of Multiple Imputation. Finally,
the complete absence of imputation leads to very big errors in the scoring output, usually higher than 10%.

An interesting observation regarding the results per test scenario is that no significant differences in the efficiency
of the imputation algorithms can be observed for the different test scenarios. Only in the two scenarios with data
collection-related missingness (RC, SC) seems the difference between the good-performing and the bad-performing
algorithms to become bigger, which is probably because of the MAR missingness and the fact that the missing data of
these test scenarios cause a higher “initial” error (cf. the results for “No Imputation™). However, the good-performing
algorithms achieve for these test scenarios very similar errors as for the other test scenarios. This similarity between
the results leads to a very important conclusion: The differences in the efficiency of the imputation algorithms lie rather
in the nature of the problem (use of discrete categorical values, use of survey results for the proxy characteristics,
scoring algorithm logic) than in the distribution of the values and the types of missingness.

As expected, because of the different complexities of the algorithms, some of the imputation algorithims have
been much more time consuming than the others. Although many statistical software packages (such as R, which
has been used in the experiments) provide practical and relatively efficient implementations of complex imputation
algorithms, some of them are very computationally intensive and time consuming [29]. Indeed, while most of the
algorithms completed their work in seconds, Multiple Imputation and Distance Function Matching often needed
many minutes for a single iteration. Although time complexity may not be critical, given the very similar results of
Multiple Imputation with, e.g., Case Deletion, it is very probable that the first one would be avoided, because such
long execution times are often undesirable or disturbing even if the process is performed offline.

7. Related Work

In the following, we will give a brief overview of the related work in the field, approaches from the ABC field,
scoring algorithms for QoS and QoE optimizations for mobile technologies, and handling of missing data.

ABC is a well-known and heavily investigated issue, concerned with letting wireless devices switch among differ-
ent access networks that they can possibly use (e.g., WLAN, UMTS, GPRS, or Bluetooth) [15, 16]. The goal is, of
course, to choose each time the access network which is most appropriate in the current context. The corresponding
selection problem is often modeled and handled as a knapsack problem (NP-hard) [30], while QoE-based approaches
have also appeared [31]. However, an issue similar to ABC appears if we move up in the OSI model [17], from the
network to the transport and session layers. There, adapted Web service access methods have to be examined and se-
lected, as described in the introduction. In accordance with ABC, we have introduced the term “Always Best Served”
(ABS). As discussed in Section 3, despite similarities to ABC, ABS appears on a different level (needs partly different
context), is less deterministic (conditions that match each of the alternatives have not been researched in such detail),
and the technologies that make the issue arise had been immature until now.

ABC is, of course, not the only domain related to networks or computing in which similar decision support or scor-
ing algorithms have been developed. For example, [32] provides a detailed analysis of QoS- and QoE-Management
for UMTS cellular networks, where decision algorithms play an important role. [32] is not concerned though with
ABS-specific attributes such as the characteristics of Web services and it rather presents solutions for problems such
as routing or mobile network configuration. Concerning, for example, the structure of the used context and the types
of knowledge incompleteness that are likely to appear, ABS obviously presents many differences compared to the
problems discussed in [32]. Further interesting scoring algorithms can be found in the domain of event-detection. For
example, [33] scores the relevance of events detected by sensors in order to decide if they should be propagated to de-
cision makers or not. However, the scoring of [33] is based on structured score sheets and decision-maker weightings.
Not only would such score sheets be impractical in the ABS scenario, but the goals (used bandwidth, user-perceived
latency, energy consumption) are also so close to each other that putting weights on them would not change the results
dramatically.
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All in all, decision support or scoring algorithms may be used in any domain and may be based on any mathemat-
ical foundations. As the focus of the work at hand is not on providing optimal decisions of any kind, but rather on
designing algorithms that match the qualitative characteristics of the problem and on examining and enhancing their
behavior against missing data, the examination and comparison of any further scoring approaches is here out of scope.

Last but not least, we want to discuss research related to the handling of missing data (cf. Section 5). A common
approach is to use scenario-specific correlations of the missing data in order to repair the sources of the errors. For
example, [34] presents an according approach for erroneous sensor data sources. Such solutions are, however, not
considered here, because it is assumed that data missingness cannot be avoided and that the control over the error
sources (user devices, mobile networks) is low or completely absent. Thus, the focus here is laid on imputation
algorithms. The state-of-the-art imputation algorithms are general-purpose and their usefulness in certain domains
depends on the peculiarities of the domain. Hence, various researchers have revisited imputation for particular cases,
e.g., for databases [35], sensor data [36, 37], or audio data [38].

8. Summary and Outlook

Researchers have presented a large number of possible Web service adaptation mechanisms in recent years. A
number of these approaches aim at the reduction of data communication in order to meet the demands of limited
connectivity and mobile devices like smartphones. However, none of these approaches is generally the best one in all
possible system contexts. Instead, the usefulness of a Web service adaptation mechanism depends on aspects such as
the device capabilities, network connection, or the actual service to be invoked. In order to choose the best adaptation
mechanism, decision support is needed. To the best of our knowledge, so far, there is no according decision support
system. Hence, we introduced this new “Always Best Served” (ABS) problem.

In this paper, we presented the underlying “Internet of Services” scenario, showed that adaptation mechanisms can
be wrapped by proxies and that the according decision support is realized by scoring the usefulness of the different
proxies/adaptation mechanisms in a certain system context. Based on this, we formulated the decision problem
mathematically and presented two according scoring algorithms, namely a QoS- and a QoE-based one. As these
algorithms are based on historical data, we focused on the challenge of missing data, which arises if it is not possible
to monitor the complete system context, as it is quite often the case in the Internet of Services.

In order to overcome this problem of data missingness, we proposed and evaluated the usage of five data imputation
algorithms to make decision finding resistant to missing context data, i.e., improving the result quality of our proposed
scoring algorithms. In this context we have demonstrated that it is possible to significantly reduce the error rate of the
QoS-based decision support algorithm using data imputation.

Case Deletion, Random Hot Deck, and Multiple Imputation have been shown to be the most promising imputation
algorithms for maintaining the quality of the proxy scoring results in a scenario with missing context data. Further,
the evaluation has shown that striving towards the development of a new, scenario-tailored imputation algorithm is
not a worthwhile goal, unless extreme requirements for the accuracy of the scoring output are set. This is because the
results of Case Deletion, Random Hot Deck, and Multiple Imputation cannot be enhanced much.
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