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Abstract—Contemporary cloud providers offer out-of-the-box
auto-scaling solutions. However, defining a non-trivial scaling
behavior that goes beyond the feature set provided by existing
solutions is still challenging. In this paper we present SPEEDL, a
declarative and extensible domain-specific language that simpli-
fies the creation of elastic scaling behavior on top of IaaS clouds.
SPEEDL simplifies the creation of event-driven policies for
resource management (How many resources, and what resource
types, are needed?), as well as task mapping (Which tasks should
be handled by which resources?). Based on a dataset of real-life
scaling policies, we demonstrate that SPEEDL can cover most
scaling behaviors real-life developers want to express, and that
the resulting SPEEDL policies are at the same time substantially
more compact, easier to read, and less error-prone than the
same behavior expressed via a general-purpose programming
language.

I. INTRODUCTION

Nowadays, the benefits of cloud computing [1] are widely
recognized. Software development in the cloud is more agile,
delivers value to the customer faster [2], and the “pay as
you go” pricing model reduces server under-utilization [3].
However, to make efficient use of “pay as you go” pricing,
cloud-native applications need to be able to adjust their cloud
resource usage elastically. That is, an application needs to
continuously monitor its state, and acquire new or release
existing cloud resources accordingly. Modern Platform-as-a-
Service (PaaS) solutions (e.g., Google Appengine1 or IBM
Bluemix2) provide simple automated, rule-based solutions
to this problem, which e.g., add and remove servers based
on CPU utilization thresholds. Those simple solutions are a
perfect fit for many three-tier web applications [4]. However,
there are many real-life applications that do not fit this model.
For some applications, incoming tasks differ substantially in
resource usage per request, or the architectural design requires
non-trivial mapping of tasks to resources [5]. Similarly, prob-
lems appear when legislative rules regarding data handling
apply. For example, the European Union establishes specific
rules for how medical data is to be handled by service
providers.

In these situations, cloud developers generally fall back to
Infrastructure-as-a-Service (IaaS) clouds, which allow more

1https://appengine.google.com/
2http://www.ibm.com/software/bluemix

fine-grained elasticity control. However, choosing IaaS also
implies that developers have to create their own cloud man-
agement solutions, which are both, cumbersome and error-
prone. Further, manual development of elasticity behavior is
repetitive, as conceptually the same kind of abstract behavior
needs to be implemented in many different applications.

In this paper we present SPEEDL, a declarative and exten-
sible domain-specific language [6] (DSL) that simplifies the
creation of elastic, application-specific cloud scaling behavior
on top of IaaS clouds. SPEEDL allows for the definition of
scaling policies, i.e., a set of event-condition-action (ECA)
rules managing the amount and types of resources (e.g., VM
instances) acquired from the cloud, as well as the mapping
of incoming tasks to these resources for processing. Unlike
existing industrial solutions, SPEEDL is extensible and allows
for application-specific rules. For demonstration purposes, we
illustrate SPEEDL using a Java-based implementation on top
of our existing JCloudScale framework [7]. Further, we show,
based on a dataset of real-life scaling policies, that SPEEDL
can cover most scaling behaviors real-life developers want to
express, and that the resulting SPEEDL policies are at the
same time substantially more compact, easier to read, and less
error-prone than the same behavior expressed in pure Java. An
initial version of SPEEDL will be made available as part of
the JCloudScale open source project3, but the DSL is not hard-
wired to JCloudScale and can easily be realized stand-alone
as well.

II. MOTIVATING SCENARIO

To motivate the remainder of this paper, we now briefly
introduce an illustrative scenario of an application requiring
more expressive elasticity rules than what existing industrial
solutions are able to deliver.

Our motivating scenario is in the medical domain. Whenever
future parents need to perform a detailed fetal scan, they
have to wait for multiple days in order to obtain results. The
main reason for this delay is the image processing software
that struggles to provide results in a reasonable time on the
limited hardware available on hospital premises. Clearly, cloud
computing is a natural way to resolve this problem. Indeed,
there are ongoing efforts in this direction [8].

3https://github.com/xLeitix/jcloudscale
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Figure 1. Overview of Motivating Scenario

A simplified illustration of this scenario is depicted in
Figure 1. Each scan performed by a doctor results in a task
that has to be processed using available computation resources,
either within the medical institution, or in a public cloud. The
clinic is saving money by processing data locally whenever
sufficient resources are available or a case is marked by a
medical practitioner as not urgent. However, when information
is urgent, or local resources are insufficient, a task is processed
in the cloud. When the task is completed, it is shown on the
doctor’s display.

Building the task routing component in Figure 1 results
in a number of challenges. Modern cloud providers already
offer load balancing solutions, but mainly within their own
ecosystems and focusing on simple random or round-robin
distribution [9]. In the described scenario, the system needs to
schedule tasks across a hybrid cloud, depending on the current
local situation and task severity. Additionally, due to legal
reasons, unless a patient agrees, all private information has
to stay within the hospital boundaries [10]. Another problem
is that existing resource management solutions (e.g., auto-
scaling) usually consist of external rule-based systems that
treat the application as a black box [11]. Due to this, it is
very difficult to provide any domain-specific knowledge to
the external component or adjust resource usage accordingly to
the doctors’ schedule and already-known upcoming patient ap-
pointments. A sometimes used, but cumbersome, workaround
is to use artificial metrics and events that trigger required
infrastructure adaptations in advance [12].

In this paper, we present an approach that allows developers
to more easily implement a custom resource management and
task scheduling solution, based on doctors’ timetable or legal
agreements with each client, in the same way to an in-house
solution. Our approach not only reduces vendor lock-in, but
also allows the hospital to use their existing resources more
efficiently, decide how many and which types of resources to

acquire from the public cloud based on load predictions, and
incorporate domain knowledge in a way that a solution that
treats the application purely as a black box cannot.

III. RELATED WORK

The problem of task scheduling did not originate in the
cloud computing area. Clearly, the workload distribution chal-
lenge is present in any distributed or parallel system [13].
With the appearance and maturing of common scheduling
algorithms [9], DSLs for scheduling and distributed systems
started to appear. Nowadays task scheduling, often in a form
of DSLs, is researched for instance within the fields of high
performance computing [14] and embedded systems [15]. In
the area of cloud computing, scheduling is usually performed
in a form of balancing [9] or greedy [16] workload distribution
in order to parallelize execution or optimize resource usage.
Such approaches satisfy data processing or classic three-
tier [4] cloud applications, and usually do not require complex
DSLs or special scheduling frameworks. However, when task
distribution needs to address such dynamic or domain-specific
features as data locality [17] or system heterogeneity [18],
the necessity of an additional layer of abstraction becomes
more plausible. Our work does not focus on advances in
cloud task scheduling. Instead, we provide a holistic approach
that contains a significant amount of common algorithms
and allows developers to address their workload management
needs as easy and clear as possible.

Resource management in general, and the elasticity concept
particularly play a vital role in cloud computing. Mainly,
research is focusing on SLA-conformance [19], cost opti-
mization [20] and “green” computing [16]. However, there
are multiple DSLs and frameworks that are facilitating the
problem of resource management by providing a user-friendly
API and predefined set of behaviors [21]. However, these
DSLs and frameworks are either completely outside of the
developed application and provide some uniform means of
resource management like TOSCA [22], or have a limited
set of access APIs from within the developed application
that allow passing information to some external decision
module [21]. Instead, our paper focuses on providing a tightly-
integrated, extensible, cloud management framework that is
running within the developed application and does not require
any standalone components.

The major difference between the presented solutions and
our approach is that we are aiming at providing a cloud man-
agement component that (1) does not enforce any specific ap-
plication design or architecture, (2) allows developer-friendly
configuration and extension using the same language as the
developed application, and (3) performs all actions within
the developed application, allowing full usage of application-
specific knowledge.

IV. THE SPEEDL LANGUAGE

We now introduce the SPEEDL design and implementation.
We first discuss some relevant design considerations, which we



follow-up by a detailed discussion of the language’s central
elements.

A. Language Design Considerations

While every cloud application has its own specifics and
unique requirements, cloud applications typically all make
use of a number of general constructs defining how cloud
resources should be acquired and used. With SPEEDL, we
structure and formalize these requirements and represent them
in a declarative DSL. The design and architecture of SPEEDL,
as well as the concrete out-of-the-box rules provided, are
influenced by existing industrial cloud systems and platforms,
ongoing parallel research activities in the field [21], [23] and
our former experience with building and supporting elastic
applications [7], [24], [25].

Existing cloud research typically models elasticity either
in the form of a control loop (e.g., in the sense of au-
tonomic computing [26]), or, more reactively, as a set of
ECA rules [27]. While the former approach is often preferred
in scientific work, those solutions often struggle with being
narrow for a specific domain and challenging to reuse or adapt
to fit different applications. The ECA-based approach avoids
this problem [27]. Hence, we decided to base SPEEDL on
the notion of complex event processing (CEP) [28], which
provides reactiveness and responsiveness to complex scenarios
and application behaviors. An additional advantage is that
the basic declarative event-based model used by SPEEDL
is conceptually close to how practitioners define elasticity
behavior in common PaaS services [11]. Hence, we argue
that the SPEEDL approach integrates better with current cloud
developer’s mindsets.

B. SPEEDL Overview

Scaling behavior in SPEEDL is provided by the developer
as a scaling policy SP. Every application makes use of exactly
one scaling policy, which can be understood as a 2-tuple
T P =< T M,RM >, with T M being a set of task management
rules, and RM a set of resource management rules. Both, T M
and RM are allowed to be the empty set (T M,RM = {}).
In this case, SPEEDL does not consider request scheduling,
or does not actually scale up or down. Every concrete rule
r ∈ T M∪RM is in turn a 3-tuple r =< E,C,A >, with E, C
and A being sets of triggering events, guarding conditions,
and resulting actions. Actions differ for task and resource
management rules. For example, task management actions
often entail scheduling a task to one specific resource. The
notion of “task” in this scope represents any workload or
application component that needs to be executed on a cloud
resource. Resource management actions may, for instance,
entail starting a new resource of a specific type. The ECA
structure of SPEEDL defines a distinct responsibility of each
part of the scaling policy and provides clear and effective ways
to configure the behavior of each rule. Additionally, this allows
applications to quickly react to changes in the system state,
without requiring periodic background checks as it is common
in other approaches [27]. SPEEDL is both, a general DSL and

a prototypical implementation with Java as a host language.
The implementation makes use of the existing JCloudScale
framework [7] to interact with the cloud, and is technically
realized as a fluent interface [29]. This makes the actual
DSL feel concise, expressive, and easy to understand. Using
method cascading, developers can simply invoke required rules
separated by dots and produce compact and tidy code that can
be read like a declarative sentence.
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Figure 2. Using SPEEDL for Elasticity Control

In Figure 2, we give a high-level overview over the main
components and interactions of a SPEEDL-based application.
SPEEDL integrates with the actual application business logic
as a third-party component (i.e., a library in the Java imple-
mentation). The SPEEDL implementation mainly executes a
defined scaling policy, which consists of task and resource
management rules. All rules are triggered via events from an
event bus. This bus receives and correlates, in the sense of
CEP, events from the cloud resources, the application, and
SPEEDL itself. Task management rules instruct the application
to execute specific tasks on specific hosts, while resource
management rules interact with the cloud to acquire and
release resources. For both, events and rules, SPEEDL contains
a useful set of predefined constructs, which we have defined
based on requirements and features of other literature and
existing products. Additionally, developers are always free
to extend these sets of predefined events and rules with
application-specific ones.

C. Top-Level Language Grammar

We discuss the formal SPEEDL grammar using Backus Nor-
mal Form (BNF). Due to space restrictions, we focus only on
the most important details, while the full grammar is available
online on supplementary materials website4. The top level of
a SPEEDL definition, shown in Grammar 1, consists of a rules
sequence, followed by the optional validation section and
the terminal statement (build). Rules are split into Scale
Up, Scale Down, Scheduling and Migration sets.

4http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/SERVICES15/
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〈ScalingPolicy〉 ::= 〈SPConfigElements〉
〈SPConfigElements〉 ::= 〈Rule〉 〈SPConfigElements〉

| 〈Validation〉 〈SPTerminalStatement〉
| 〈SPTerminalStatement〉

〈SPTerminalStatement〉 ::= ‘build’

〈Rule〉 ::= 〈ScaleUpRule〉
| 〈ScaleDownRule〉
| 〈SchedulingRule〉
| 〈MigrationRule〉

Grammar 1. Top-level Formal Language Specification of SPEEDL

The validation section allows to trigger an optional
consistency validation of the scaling policy. SPEEDL distin-
guishes two types of validation: (1) internal rule validation
warns about rules that are internally inconsistent (e.g., scaling
up whether the number of hosts is larger than −1), while
(2) external validation checks for inter-rule inconsistencies.
Out-of-the-box, SPEEDL currently only supports internal rule
validation. External validation logics need to be provided by
the developer, if required.

In the following sections, we discuss each group of rules
in more detail and introduce the available out-of-the-box
constructs. Due to page limitations, we are unable to discuss
every element and rule in SPEEDL in detail. However, we
will discuss the most central and interesting features of the
language, and provide code examples based on the JCloud-
Scale Java implementation of SPEEDL.

D. Event-Driven Elasticity

Events form the basis of all rules in SPEEDL. Naturally, dif-
ferent systems and implementations make available different
pre-defined events. In the Java implementation of SPEEDL, the
events depicted in the event hierarchy in Figure 3 are available.
Predefined events are mainly produced and consumed within
the framework itself and cover a range of common elasticity-
related situations, such as task scheduling or execution, host
lifetime and resource usage. These predefined events are an
extension of our earlier work in [30]. Additionally, application
developers can implement custom, domain-specific events,
which are typically triggered either in custom rules or directly

in the application. In the hospital scenario from Section II, a
potential domain-specific event may be the creation of a task
that is not allowed to be scheduled to a public cloud due to
privacy reasons.

E. Task Management

Task management rules focus on how to map tasks to
resources. While these rules may take into account the state
of the cloud infrastructure, the only actions that are initiated
is that one or more tasks are assigned to exactly one host for
execution. Task management rules come in two flavors, the
task scheduling or the task migration rule sets. Task scheduling
represents the initial mapping of a new task to a resource,
while task migration re-maps an already-existing task. Task
migration controls the dispersion and load of each resource
by arranging and moving tasks in order to maintain overall
system stability.

〈SchedulingRule〉 ::= ‘Schedule’ 〈ScheduledTaskType〉
〈HostFilter〉 〈SelectedSchedulingRule〉

| 〈customSchedulingRuleImplementation〉
〈ScheduledTaskType〉 ::= ‘task’ 〈allowedTaskType〉

| ‘’

〈HostFilter〉 ::= ‘allHosts’
| ‘onRandom’ 〈selectedHostsCount〉
| ‘onHosts’ 〈customHostFilter〉
| ‘’

〈SelectedSchedulingRule〉 ::= 〈GreedyRule〉
| 〈BalancingRule〉

〈GreedyRule〉 ::= ‘greedy’ 〈greedyRuleConfig〉
〈BalancingRule〉 ::= ‘balance’ 〈balancingRuleConfig〉

Grammar 2. Formal Specification of Task Scheduling Rules

1) Task Scheduling Rules: There are two prevailing ap-
proaches to distribute tasks in the cloud. (1) Balancing rules [9]
aim to evenly distribute tasks over all available hosts, with
the ultimate goal of achieving a close-to-uniform distribution
of tasks over hosts, while (2) greedy rules [16] aim to
saturate a single resource before using the next. Both of these
behaviors have merits, and domain- and application knowledge



Schedule
. t a s k s ( F e t a l S c a n T a s k . c l a s s )
. onHosts (

( hos t , t a s k )−>
h o s t . ge tType ( ) == ( canRunInCloud ( t a s k ) ?

PUBLIC_CLOUD : PRIVATE_CLOUD) )
. greedy ( )
. maxTasks ( 4 ) ;

Listing 1. Greedy Scheduling Rule

is required to select which of those fundamental strategies is
more suitable.

Additionally, each balancing or greedy rule is further shaped
by a set of restrictions. Developers can specify a criterion that
selects the set of hosts that should be considered. Alternatively,
developers can specify which type of tasks this scheduling rule
applies to, as well as a maximal amount of concurrent tasks
running per host. Finally, specific scoring criteria, comparable
to a fitness function in optimization, can be specified for each
host or scheduled task. This criterion allows developers to bal-
ance tasks depending on application-specific task properties,
thus achieving better, domain-specific, scheduling results by
exploiting data locality [17] or achieving cost-effectiveness.

We provide the formal definition of a scheduling rule in
Grammar 2. An illustrative example of a rule that distributes
fetal scan tasks between private and public cloud depending
on a custom developer-defined predicate is shown in Listing 1
in the syntax of the SPEEDL Java implementation.

2) Task Migration Rules: In many applications, especially
those with long-running tasks, e.g., scientific computing, it
may often make sense to re-assign tasks that have already
been started to execute on a resource. The technical process
of task migration is out of scope in this paper. However,
SPEEDL provides a set of rules that allow the definition
of a migration strategy as part of the scaling policy, if the
underlying application is able to suspend and move tasks,
as it is for instance the case in the JCloudScale middleware
used for the Java implementation of SPEEDL. The formal
structure and main rule categories are again defined using BNF
in Grammar 3.

〈MigrationRule〉 ::= ‘migration’ 〈MigrationType〉
| 〈customMigrationRuleImplementation〉

〈MigrationType〉 ::= 〈IntegrationRule〉
| 〈OptimizationRule〉

〈IntegrationRule〉 ::= ‘integrate’ 〈integrationConfig〉
〈OptimizationRule〉 ::= ‘optimize’ 〈optimizationConfig〉

Grammar 3. Formal Specification of Migration Rules

The process of task migration consists of four distinct
phases. At first, situations that require migration need to be
detected (detection phase). As SPEEDL is based on the notion
of ECA rules, this phase is implemented via events. Next, tasks
that should be migrated are selected (task selection phase).
By default, SPEEDL prefers to migrate tasks that have been

started last, but oftentimes an application developer will want
to substitute this behavior with application-specific logic. After
that, the destination host to which the task should be migrated,
needs to be selected (host selection phase). By default this is
controlled by the same metric as the migration condition (e.g.,
when high RAM usage is detected, objects are migrated to
hosts with the least RAM usage). However, again developers
are able to customize this selection strategy or provide their
own implementation. Finally, the actual migration needs to be
be performed (migration phase).

An example of an optimization migration rule that allows
decreasing the load on the private hospital infrastructure of
our motivating scenario by moving some tasks to the public
cloud during working time is shown in Listing 2.

Migrat ion . o p t i m i z e ( )
. h o s t s ( h o s t −> h o s t . ge tType ( ) == PRIVATE_CLOUD)
. withMoreTasks ( 4 )
. migrateTo ( h o s t −> h o s t . ge tType ( ) == PUBLIC_CLOUD)
. i f V i o l a t e d F o r ( o f M i n u t e s ( 5 ) )
. mi nAc t io nIn ter va l ( o f M i n u t e s ( 1 0 ) )
. canMigrate ( t a s k −> canRunInCloud ( t a s k ) )
. arrangeTasks ( t a s k −> t a s k . g e t S t a r t T i m e ( ) ,

DESCENDING)
. i sEnabled ( D o c t o r s S c h e d u l e

. i sWorkingTime ( now ( ) ) ) ;

Listing 2. Optimizing Migration Rule

F. Resource Management

Resource management rules provide a mechanism to control
and adapt the resources that the application requests from the
cloud infrastructure. While rules may take into account host
resource usage, task executions or the application state, the
main outcome of all resource management rules is a change in
the number and/or types of available resources. This happens
primarily through the scale-up and scale-down rule sets. Indus-
trial PaaS platforms usually take scale up and scale down deci-
sions based on resource usage metrics, e.g., average CPU load.
This generic approach is also supported by SPEEDL. However,
resource-based scalability is reactive, cumbersome to write
and hard to tweak [31], as all decisions have to be based
on the current resource usage. Therefore, SPEEDL provides
additionally an alternative approach that allows taking resource
management decisions based on application-specific events
and conditions [30]. This allows adapting cloud resource usage
in advance, e.g., based on domain-specific predictions of future
load. For example, in the motivating scenario in Section II,
medical practitioners often know in advance when a large
batch of new fetal scans is due, based on their appointment
schedule.

1) Scale-Up Rules: Scaling up is usually controlled via one
or more application-dependent metrics (e.g., CPU/RAM usage,
task throughput, predictions of future load). The behavior of
all those rules is similar – if a metric threshold is exceeded,
a scale-up action is executed. Hence, we created a single
configurable behavior policy that accepts a controlled metric
and additional configuration that allows defining the actual



action, e.g., how many and which resources to start. The
event-based nature of SPEEDL gives us the ability to flexibly
adjust thresholds and actions, depending on application needs.
Further, by leveraging complex event processing, developers
have access to powerful means of data aggregation and anal-
ysis when defining metrics. However, in addition to these
metric-threshold based rules, SPEEDL also contains other
rules for scale-up. For long-running applications, SPEEDL
also provides time-based scale-up rules. These rules do not
trigger based on changes in the actual or predicted load, but
ensure that a proper amount of hosts is running at specified
points in time. This model is suitable for applications with
well-known periods of high usage. A formal definition of
SPEEDL scale-up rules is given in Grammar 4.

〈ScaleUpRule〉 ::= ‘scale up’ 〈HostFilter〉 〈ScaleUpRule〉
| 〈customScaleUpRuleImplementation〉

〈HostFilter〉 ::= ‘allHosts’
| ‘hosts’ 〈customHostFilter〉
| ‘’

〈ScaleUpRule〉 ::= 〈hostStateRule〉
| 〈timeBasedRule〉
| 〈taskQueueStateRule〉
| 〈customMetricRule〉

Grammar 4. SPEEDL scale up rules specification.

A sample scale-up rule that scales from 1 to 20 cloud hosts
when we have more scheduled appointments over the next
hour than we have processing resources, is shown in Listing 3.

ScaleUp
. h o s t s ( h o s t −>

h o s t . ge tType ( ) == PUBLIC_CLOUD)
. when ( h o s t s −>

c o u n t T a s k C a p a c i t y ( h o s t s ) < D o c t o r s S c h e d u l e
. a p p o i n t m e n t s ( now ( ) , o fHours ( 1 ) ) )

. checkEvery ( o f M i n u t e s ( 5 ) )

. minHosts ( 1 )

. maxHosts ( 2 0 )

. sca leUpStep ( 1 )

. newHostType ( "PUBLIC_CLOUD" , "m1 . s m a l l " )

. minScaleUpInterva l ( o f M i n u t e s ( 1 0 ) ) ;

Listing 3. A Scale-Up Rule Based on a Domain-Specific Metric

2) Scale-Down Rules: While scaling up is often based on
current or predicted load, scaling down should in contem-
porary IaaS cloud systems be aligned with the billing time
unit (BTU) of the cloud provider. In IaaS cloud systems,
computing resources are typically billed periodically (e.g.,
hourly in Amazon EC25, per minute after the first 10 minutes
in Google). Economically, it makes little sense to release a
resource while it is still paid for. Hence, evaluation whether
resources should be scaled down or not in SPEEDL is triggered
briefly before the resource would enter the next billing period.
A second peculiarity of scaling down is that it often needs to

5http://aws.amazon.com/ec2/

integrate with migration (see Section IV-E2) in order to move
tasks still scheduled to a resource that is about to be scaled
down. Aside from those aspects, scaling down is conceptually
similar to scaling up. As always, a formal definition of scale-
down rules in BNF is presented in Grammar 5.

〈ScaleDownRule〉 ::= ‘scale down’ 〈ScaleDownRule〉
| 〈customScaleDownRuleImplementation〉

〈ScaleDownRule〉 ::= 〈resourceUsageRule〉
| 〈hostStateRule〉
| 〈taskQueueStateRule〉
| 〈timeBasedRule〉
| 〈customMetricRule〉

Grammar 5. SPEEDL scale down rules specification.

An example of a scale-down rule that releases cloud re-
sources when no longer needed outside of hospital working
hours is shown in Listing 4.

ScaleDown . runningTasks ( 0 )
. checkAdvance ( o f M i n u t e s ( 1 ) )
. minHosts (

h o s t −> h o s t . ge tType ( ) == PUBLIC_CLOUD , 1)
. i sEnabled (

h o s t −> h o s t . ge tType ( ) == PUBLIC_CLOUD &&
! D o c t o r s S c h e d u l e . i sWorkingTime ( now ( ) ) )

Listing 4. A Scale-Down Rule Based on Task Count

Hosts that are currently running tasks may also be scaled
down. In some cases, it is safe to restart the aborted task
on another host. This is a common assumption in many
state-of-the-art PaaS platforms, which primarily deal with
HTTP requests as tasks. However, this is not always the
case. Sometimes, tasks cannot be aborted due to high startup
costs, or the possibility of introducing state inconsistencies.
In such cases, the host either has to be left running until
the tasks are finished or, if this is possible, the tasks have
to be migrated to another host. In SPEEDL this is controlled
by the ifWithTasks condition. It defines whether tasks can
be discarded, left running or migrated to another host. In
more sophisticated cases, developers can perform any custom
actions with a particular host (including task migration or
abortion) within the custom predicate that allows determining
if particular scale down rule is applicable to this host. As an
example, such a custom predicate is used in Listing 4 to release
only cloud hosts while the hospital is not operating.

V. EVALUATION

In order to validate our work, we now evaluate SPEEDL
based on a dataset of real-life scaling code collected during a
previous user study.

A. Evaluation Setup

For evaluation, we use a dataset of IaaS scaling code in Java,
which we harvested during a previous programming study.
The setup and results of this study are described in detail



in [25]. Summarizing, we had 14 male Master students of
computer science at TU Vienna implement non-trivial elastic
applications on top of EC2 and OpenStack6. One of the central
outcomes of this earlier study was that implementing the
scaling behavior was harder than actually getting the business
logics of the application right. In fact, multiple participants
reported that they spent significant amount of the alloted time
trying to develop a robust scaling behavior [25].

synchronized ( l o c k )
{

t r y {
/ / d i r t y hack t o g e t c o r r e c t
/ / h o s t . g e t C l o u d O b j e c t s C o u n t ( )
Thread . s l e e p ( 1 0 0 0 ) ;

} catch ( I n t e r r u p t e d E x c e p t i o n e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}
whi le ( s e l e c t e d H o s t == n u l l ) { . . . }

}

Listing 5. Snippet from Real-Life Scaling Code

From the resulting applications, we extracted the code that
was responsible for scaling and task distribution. The scaling
code we obtained in this way differs dramatically in size
and complexity. The shortest was only 27 lines of Java code
(LoC), while the longest one was 177 LoC (median length was
75 LoC). Informal inspection of these code snippets revealed
that many study participants indeed struggled with getting the
scaling behavior right, and ended up building rather fragile,
“hacky” Java solutions (see Listing 5 for an example). After
detailed analysis by the first author, we manually implemented
equivalent code in the SPEEDL DSL. Both, extracted scaling
code and the equivalent SPEEDL scaling policies are available
online on supplementary materials website.

B. Results and Discussion

We now compare the original Java-based solutions to
SPEEDL. We are particularly interested in the amount of code
necessary to represent the same behavior, and to what extend
the out-of-the-box rules of SPEEDL are useful for expressing
the scaling behavior that the participants of our study wanted
to implement.

In terms of LoC, the SPEEDL representations indeed turned
out to be substantially shorter than the equivalent pure Java
code (shortest was 8 LoC, longest was 21 LoC, with a median
of 11.5 LoC). This is illustrated in Figure 4, which depicts the
LoC for each scaling behavior next to the size of an equivalent
SPEEDL policy. Additionally, we argue that the more compact
SPEEDL equivalents are also easier to read and comprehend.
For instance, we were able to replace a complex multi-method
scaling behavior, which included “sleep” statements, nested
iterations, and global locking for synchronization with the
SPEEDL policy shown in Listing 6.

As a second step, we evaluated to what extend the existing
rules in SPEEDL are able to cover the needs of real-life

6https://www.openstack.org
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Figure 4. Length Comparison of Evaluated Scaling Policies

application developers, and how often developers need to
build custom rules. Our analysis showed that we were able
to provide equivalent versions of 71% of all scaling behaviors
in the dataset using out-of-the-box rules alone. 100% of all
behaviors could be represented with a small amount of custom
rules. The scaling behaviors that required custom rules are
plotted in darker color in Figure 4.

S m a r t P o l i c y
. c r e a t e ( Schedule . greedy ( )

. maxTasks (
s c h e d u l e r C o n f i g . ge tMaxCloudObjec t s ( ) ) )

. add ( ScaleUp
. queueLength (

s c h e d u l e r C o n f i g . ge tMaxCloudObjec t s ( ) )
. maxHosts ( s c h e d u l e r C o n f i g . getMaxNodes ( ) )
. newHostsType ( s c h e d u l e r C o n f i g . g e t F l a v o r ( ) ) )

. add ( ScaleDown . runningTasks ( 0 ) )

Listing 6. Complete Example of a SPEEDL Scaling Policy

Finally, another interesting observation was that 4 of the
scaling behaviors in the dataset contained minor errors (29%).
3 scaling behaviors are not correctly synchronized and can
potentially fail due to race conditions. Similarly, another code
has (based on the intent shown in a code comment) incorrectly
defined “if"-conditions, which would lead to unwanted scaling
in edge cases. Hence, the usage of the out-of-the-box rules
of SPEEDL does not only simplify the definition of scaling
behavior, but also reduces the potential for developer errors.

We conclude that SPEEDL indeed provides a noteworthy
improvement in scaling policy readability and length. While
the existing out-of-the-box rules provided by SPEEDL cannot
cover everything a developer would want to express, we were
still able to re-implement 71% of all scaling behaviors using
out-of-the-box rules alone. Using custom rules, we were able
to implement equivalents to all scaling behaviors. Finally, we
have seen that the complications of building real-life scaling
behavior can easily lead to hard-to-detect bugs, such as race
conditions. Using the out-of-the-box rules of SPEEDL greatly
reduces the risk of such bugs.

VI. CONCLUSIONS

In this paper we presented SPEEDL, a domain-specific
declarative language that simplifies defining advanced task



and resource management policies for IaaS cloud applications.
Contrary to existing approaches, SPEEDL is aiming to provide
cloud management abilities as part of the cloud application
rather than via an external system, thus allowing developers to
incorporate domain-specific information and flexible applica-
tion design. As we showed in our evaluation, using SPEEDL,
developers can significantly decrease the code necessary for
defining custom scaling solutions, simplify the creation of so-
phisticated scaling policies and decrease the amount of errors.
Additionally, we have shown that the pre-defined SPEEDL
rules alone already cover 71% of the functionality of our
dataset of existing scaling policies.

While we believe that the current version of SPEEDL is
already useful and improves developers’ experience when
interacting with IaaS clouds, there are still a number of
improvements we plan to investigate in future. For example,
currently SPEEDL is designed to run on a single machine
and to solely control the execution of a single application.
In the future, we plan to soften this constraint, to prevent
SPEEDL becoming a single point of failure and hamper
scalability. Additionally, we plan to continue enhancing the
set of pre-defined rules provided with SPEEDL, as well as
further improve the expressibility of the language itself.
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