
ETH Relay: A Cost-efficient Relay
for Ethereum-based Blockchains

Philipp Frauenthaler∗, Marten Sigwart∗, Christof Spanring†, Michael Sober∗, Stefan Schulte∗
∗ Christian Doppler Laboratory for Blockchain Technologies for the Internet of Things

Distributed Systems Group, TU Wien, Vienna, Austria
{p.frauenthaler, m.sigwart, m.sober, s.schulte}@dsg.tuwien.ac.at

† Pantos GmbH, Vienna, Austria
contact@pantos.io

Abstract—Current blockchain relay schemes require the imme-
diate validation of each relayed block header by the destination
blockchain. This leads to high operating cost when deploying these
relays between Ethereum-based blockchains where validating
block headers on-chain is computationally expensive.

To overcome these limitations, we introduce a novel relay
scheme that employs a validation-on-demand pattern combined
with economic incentives to reduce the cost of operating a relay
between Ethereum-based blockchains by up to 92%. With this
relay scheme, decentralized interoperability between blockchains
like Ethereum and Ethereum Classic becomes feasible.

Index Terms—blockchain interoperability, cross-blockchain
communication, blockchain relay, simplified payment verification

I. INTRODUCTION

Because of its ability to store data and execute code in a
decentralized and immutable way, blockchain technology is
seen as potentially disruptive in areas such as finance [1],
business process management [2], data provenance [3, 4],
supply chain management [5], or healthcare [6]. The growing
popularity among industry and research communities has led
to a plethora of new projects creating their own blockchains,
either by developing an entirely new one or by forking an
existing code base. However, interoperability between these
blockchains is often not foreseen. As a result, a heteroge-
neous landscape of independent and unconnected platforms has
emerged [7]. Today, even blockchains that share the same code
base operate isolated from each other. Prominent examples
of such blockchains are Ethereum-based blockchains, e.g.,
Ethereum and Ethereum Classic.

One promising way to break this isolation are blockchain
relays [8]. Relays operate by having off-chain clients forward
block headers of some source blockchain to a destination
blockchain virtually replicating one blockchain within the
other. This way, it becomes possible for the destination block-
chain to independently verify that certain pieces of data (e.g.,
transactions) exist on the source blockchain [8].

To ensure that only valid block headers are replicated within
the destination blockchain, current relay solutions [9, 10]
require the destination blockchain to validate each relayed
block header according to the protocol rules of the source
blockchain (e.g., the consensus algorithm). With each block

header being validated on-chain, the need for explicit trust in
off-chain clients is eliminated.

However, Ethereum-based blockchains such as Ethereum
and Ethereum Classic use a consensus algorithm called Ethash
that is computationally expensive to validate on-chain. Even
with gas-optimized implementations [11], the validation of
Ethash for a single block header still costs around 3 million
gas. Thus, operating a relay that requires each block header
to be fully validated on submission between Ethereum-based
blockchains leads to exorbitant operating cost.

To overcome this issue, we introduce ETH Relay—a novel
relay scheme that uses a validation-on-demand pattern to-
gether with a sophisticated incentive structure to achieve a
cost reduction of up to 92% over traditional relay solutions
when deployed for Ethereum-based blockchains. We show that
ETH Relay is fully decentralized and secure as long as at least
one off-chain client acts honestly.

To this end, the paper is organized as follows. We first
provide background information on blockchain relays (Sec-
tion II), and take a look at existing relay solutions (Section III).
In Sections IV and V, we then describe the concepts and
implementation of ETH Relay. In Sections VI and VII, we
evaluate the proposed relay scheme with regards to security and
operating cost, respectively. Finally, Section VIII concludes the
paper.

II. BACKGROUND

In blockchain relays, off-chain clients relay the block head-
ers of a source blockchain to some destination blockchain [8].
Having access to the source blockchain’s block headers, the
destination blockchain can use a technique called Simplified
Payment Verification (SPV) to verify the existence of certain
pieces of the source blockchain’s state (e.g., the existence of
certain transactions). In this section, we first explain the con-
cept of SPV and then describe how SPVs facilitate blockchain
relays.

A. Simplified Payment Verification

SPV is a technique that can be used to cryptographically
verify that a particular transaction is part of a blockchain while
only having knowledge of a blockchain’s block headers and not

Block Header

Merkle Root
Hash

Block Header Block Header

H() H()

Tx1

H() H()H() H()

Tx2 Tx3 Tx4

Merkle
Proof

Fig. 1. A block consists of a header and a Merkle tree containing the block’s
transactions. Merkle trees enable concise proofs of membership, as illustrated
for Tx2.

the individual blockchain transactions [1]. SPV is commonly
used in light nodes such as wallet software [12].

In blockchains such as Bitcoin and Ethereum, transactions
in a block are organized in a so-called Merkle tree [13], a data
structure in which each node uses hash pointers to reference
its child nodes. As seen in Fig. 1, the leaves of the Merkle
tree consist of the individual transactions with the hash of the
Merkle tree’s root (Merkle root hash) stored as part of the
block header. Therefore, a light node has access to the Merkle
root hash. With this, light nodes can verify the inclusion of
a particular transaction in the blockchain by leveraging a so-
called Merkle proof of membership. Such a proof consists of
all tree nodes that make up the path from the transaction (leaf)
up to the root node (see Fig. 1), and can be retrieved from full
nodes. When retrieving such a proof, the light node recalculates
the hashes of all nodes along the path from the leaf (i.e., the
transaction) up to the root node. If the final hash matches the
Merkle root hash of the block header stored by the light node,
the membership of the transaction within the corresponding
block is successfully verified. Light nodes thus are able to
verify the existence of transactions (e.g., payments) while only
consuming a fraction of the space as they do not need to store
the transaction history.

B. Relay Schemes

Light nodes use SPVs to verify whether or not a particu-
lar transaction exists on some blockchain. Blockchain relays
leverage this capability by having a smart contract on some
destination blockchain act as a light node for some source
blockchain [8]. A prominent example for this is BTC Relay [9].
BTC Relay is essentially a Bitcoin light node running on the
Ethereum blockchain in the form of a smart contract, the so-
called relay contract. The relay contract is able to verify the
inclusion of Bitcoin transactions on the Ethereum blockchain
by means of SPVs.

For successful SPVs, the relay contract needs to know about
the block headers of the source blockchain. However, contrary

to off-chain light nodes, the relay contract cannot proactively
query headers from full nodes. Instead, headers of the source
blockchain need to be constantly submitted to the contract
by off-chain clients. As any off-chain client can submit block
headers, potentially illegal block headers may arrive at the relay
contract. Hence, blockchain relays need to make sure that only
valid block headers are used for SPVs [8].

Furthermore, in Proof of Work (PoW) blockchains like
Ethereum, multiple valid blocks with the same block height
can exist in parallel, forming multiple blockchain “branches”.
While there can be several branches at the same time, only
one of these branches represents the current main chain of
the blockchain, e.g., in PoW blockchains, the main chain
is identified by searching for the branch with the highest
total difficulty [8]. As more block headers are appended to
branches, the main chain of a blockchain may change over
time. This represents a challenge to relays since SPVs should
only be successful if the requested block header is part of
the main chain. When an SPV is requested on a certain
block, the relay contract thus needs to determine whether the
block is part of the main chain of the source blockchain.
The likelihood of a block remaining part of the main chain
increases with each succeeding block that is appended to it.
These block confirmations should be taken into account by
the relay contract as well when performing SPVs.

III. RELATED WORK

As blockchain relays are seen as one way to achieve
blockchain interoperability [8, 14], a couple of relays have
been implemented and conceptualized [9, 10, 15, 16, 17]. In
the following section, we explain how these relays verify the
validity of submitted headers and discuss current limitations.

BTC Relay [9] was the first and—to the best of our
knowledge—so far only relay solution to be operational. It
allows relaying block headers from the Bitcoin blockchain to
the Ethereum blockchain. Similarly, Waterloo [15, 16] attempts
to provide a relay between the Ethereum and EOS blockchains.
Waterloo is bi-directional, i.e., it consists of two separate
relays, from Ethereum to EOS and from EOS to Ethereum.
To ensure that only valid block headers are used for SPVs,
both relays—BTC Relay and Waterloo—fully validate newly
submitted block headers according to the header validation
procedure of the source blockchain, i.e., the blockchain from
which the headers originate (e.g., Bitcoin in case of BTC
Relay). Among other things, this usually involves validating
the consensus algorithm, e.g., for PoW blockchains it needs to
be verified that enough work was performed for constructing
a block [8].

For both relays, fully validating every submitted block
header is economically viable due to the specifics of the
involved blockchains. In case of BTC Relay, validating each
Bitcoin block header on Ethereum is feasible as Bitcoin
headers only have a size of 80 bytes and validating the Bitcoin
hashing algorithm SHA-256 on Ethereum is computationally
inexpensive.

Relay Contract

Source Blockchain

Destination Blockchain

Off-chain Clients
Dispute

Observe Submit

Fig. 2. The ETH Relay Scheme

In Waterloo, relaying headers from Ethereum to EOS is
economically viable because EOS uses delegated Proof of
Stake as consensus mechanism. By design, this allows cheaper
on-chain computations and thus makes the on-chain validation
of Ethash, the consensus algorithm of Ethereum, feasible. For
the other direction (EOS to Ethereum), delegated Proof of
Stake relies on a changing set of block producers, which
on average happens every 8 hours [15]. Consequently, when
relaying block headers from EOS to Ethereum, it suffices to
validate only those headers where the block producers change.

BTC Relay and Waterloo both work in their specific settings.
However, when deploying one of these schemes between
Ethereum-based blockchains such as Ethereum and Ethereum
Classic, validating each block header would lead to high
operating cost: validating Ethash, the PoW algorithm used
by Ethereum-based blockchains, on another Ethereum-based
blockchain costs about 3 million gas even with gas-optimized
solutions (see Section VII). Hence, the underlying strategy
employed by BTC Relay and Waterloo is not viable for relays
between Ethereum-based blockchains.

A relay for Ethereum-based blockchains that mitigates high
validation cost is PeaceRelay [10]. In its current implementa-
tion, PeaceRelay relies on trusted, authorized clients to submit
valid block headers. While this makes PeaceRelay relatively
cheap to operate, it also leads to a high degree of centralization.
PeaceRelay is therefore rather a notary scheme than a relay.

Another approach for reducing operating cost is to leverage
zero-knowledge proofs as done in zkRelay [17]. In zkRelay,
clients validate a batch of Bitcoin headers off-chain and
submit a proof certifying the successful validation to the relay
contract on the Ethereum blockchain. While the block header
validation of Bitcoin can be implemented as zero-knowledge
proof enabling such succinct batch submissions, it is uncertain
whether this approach can be leveraged for block headers of
Ethereum-based blockchains.

To conclude, a number of blockchain relays have been
conceptualized so far. However, their applicability largely
depends on the underlying blockchains. Deploying these relays
between Ethereum-based blockchains either leads to high op-
erating cost, requires explicit trust in third parties, or may be
technologically infeasible. The following sections show how
operating cost of relays can be kept to a minimum without
placing explicit trust in third parties.

Algorithm 1 Procedure performed by the relay contract when
receiving a new header of the source blockchain

1: function SUBMITBLOCKHEADER(header, submitter)
2: if headers.contains(HASH(header)) == true then
3: return false
4: parentHash = header.parentHash
5: if headers.contains(parentHash) == false then
6: return false
7: headers.put(HASH(header), header)
8: header.m.lockedUntil = now + LOCK PERIOD
9: parent = headers.get(parentHash)

10: parent.m.chldn.append(HASH(header))
11: branchHeads.add(HASH(header))
12: if branchHeads.contains(parentHash) then
13: branchHeads.remove(parentHash)
14: header.m.branchId = parent.m.branchId
15: header.m.junction = parent.m.junction
16: else
17: lastBranchId = lastBranchId + 1
18: header.m.branchId = lastBranchId
19: header.m.junction = parentHash
20: if parent.m.chldn.length == 2 then
21: SETJUNCTION(parent.m.chldn[0], parentHash)
22: mainChainHead = GETMAINCHAINHEAD()

IV. ETH RELAY

This section introduces ETH Relay, a novel relay scheme
that keeps operating cost low while remaining fully decentral-
ized and secure. The relay scheme consists of a relay contract
(i.e., a smart contract) running on the destination blockchain
and off-chain clients (see Fig. 2).

A. Validation-on-demand

In ETH Relay—just like in any relay scheme—off-chain
clients are responsible for continuously relaying block headers
of the source blockchain to the relay contract on the destina-
tion blockchain. Algorithm 1 shows the pseudo code that is
executed for each newly submitted block header.

Right after the arrival of a new header, it is checked that the
retrieved header has not been submitted to the relay contract
before (Line 2) and that the parent block referenced by the
header is known to ensure that only a continuous chain of block
headers is replicated within the relay contract (Line 5). If both
checks are successful, the header is stored in a hashmap with
the header’s hash as key and the header itself as value (Line 7).

Notably, a full header validation as done by traditional
relay solutions such as BTC Relay is not carried out. Instead,
the key to reducing operating cost in ETH Relay lies in a
validation-on-demand pattern. That means, newly submitted
block headers do not immediately undergo the expensive full
header validation procedure of the source blockchain. Rather,
they are optimistically accepted by the relay contract. Of
course, this may lead to invalid block headers entering the relay

contract. Therefore, each newly received header is “locked” for
a certain amount of time (Line 8), during which a block header
cannot be used for SPVs.

To filter out the invalid block headers that may have entered
the relay contract, locked headers can be disputed by the off-
chain clients as shown in Fig. 2. That is, the clients monitor
the relay contract and the source blockchain. Whenever they
detect a block header that is submitted to the relay contract
and that does not constitute a valid block header of the source
blockchain, they send a dispute request to the relay contract.
In case of a dispute, the full header validation according to
the rules of the source blockchain is carried out by the relay
contract. If the validation fails, the invalid block header is
removed from the contract. If in the meantime, block headers
have been submitted to the relay contract that derive from
the invalid block header, these descendants are removed as
well (see Fig. 2).

Once the lock period has passed, block headers are con-
sidered valid. From then on, SPVs on these headers can be
carried out. While the validation-on-demand pattern already
reduces cost of submitting block headers, ETH Relay applies
a further optimization for reducing operating cost by using a
modified version of the so-called content-addressable storage
pattern [18].

B. Content-Addressable Storage Pattern

The idea of the content-addressable storage pattern is that
not all data needs to be stored directly in the relay contract.
Instead, the remaining data is stored externally. As Ethereum
transactions also include the parameters of smart contract
invocations, submitted block headers are implicitly recorded
in the blockchain’s transaction history. We can take advantage
of this fact by storing only the hash of the block header,
the block number and certain meta data in the relay contract
itself. Whenever clients initiate a dispute or an on-chain SPV,
they read the required full header data from the corresponding
submit-transactions recorded in the transaction history and
provide it to the relay contract. The contract can then verify
the provided headers’ integrity by recalculating their hashes
and comparing them to the hashes stored in the relay contract.
This way, no trust in the client invoking an SPV or a block
header dispute is required. With fields such as the parent hash
or the Merkle root hash no longer being kept in the relay
contract directly, the amount of stored data per block header
is reduced—subsequently further reducing submission cost.
Notably, while the content-addressable storage pattern leads
to reduced submission cost it may increase cost of executing
SPVs and header disputes since more data needs to be passed
with each request (see Section VII for details).

Obviously, the correct functioning of ETH Relay is only
ensured if off-chain clients continuously submit block headers
of the source blockchain to the relay contract on the destination
blockchain and dispute any invalid block headers entering the
relay contract. However, clients that submit and dispute block
headers incur cost. Thus, an incentive structure for encouraging

(honest) participation is needed. The details of this incentive
structure are explained in the next section.

C. Incentive Structure

Without an incentive structure that compensates off-chain
clients for submitting and disputing block headers, clients
may have no interest in participating in the proposed relay
scheme. The incentive structure we propose rewards off-chain
clients for submitting and disputing block headers and also
discourages submission of invalid block headers.

To hold clients that submit invalid block headers account-
able, clients are required to deposit a stake for every submitted
header. The stake is locked for the duration of the lock period
of newly submitted block headers. While the stake is locked,
it cannot be withdrawn and cannot be used for submitting
further block headers. After a submitted header has passed
the lock period without a dispute, the client that submitted the
header gets back control of the corresponding stake. However,
in case the block header is disputed successfully within the
lock period, i.e., the validation of the block header fails,
the client that triggered the dispute earns the locked stake
of the submitter as well as any stake that was locked for
any descendant of the illegal block header. Not only does
this incentivize disputes, it also discourages submission of
invalid block headers as clients risk losing the deposited stake.
Of course, clients are only incentivized to dispute headers if
the potential reward is higher than the cost of executing the
dispute.

To encourage the submission of block headers, clients re-
ceive a fee every time their submitted headers are used for
SPVs. This verification fee is paid by the client requesting the
verification. To fully compensate submitting clients, the total
verification fees earned on each header need to be greater than
the initial submission cost for that header (Eq. (1)).

fee× no. of verifications > submission cost (1)

The minimum verification fee can thus be calculated as the
average submission cost divided by the expected number of
verifications per block header (Eq. (2)).

fee >
submission cost

no. of verifications
(2)

With headers replicated within the relay contract and an
incentive structure in place to encourage participation and
honest behavior, the next section looks at how SPVs are
executed within ETH Relay.

V. SIMPLIFIED PAYMENT VERIFICATION IN ETH RELAY

Once headers are replicated within the relay contract, clients
(e.g., other smart contracts) can send a request to the relay
contract in the form of “Is transaction tx of block b part of
the source blockchain and confirmed by at least n blocks?”.
To answer the request, the relay contract executes an on-chain
SPV. Since SPVs should only be successful if the requested
block is part of the main chain of the source blockchain,

Block 0x11

Height: 17

BranchId: 1

Junction: 0x10

Block 0x12

Height: 18

BranchId: 1

Junction: 0x10

Block 0x13

Height: 19

BranchId: 1

Junction: 0x12

Block 0x14

Height: 19

BranchId: 2

Junction: 0x12

Block 0x15

Height: 20

BranchId: 1

Junction: 0x12

Block 0x16

Height: 21

BranchId: 1

Junction: 0x15

Block 0x18

Height: 21

BranchId: 3

Junction: 0x15

Block 0x19

Height: 22

BranchId: 3

Junction: 0x15

Block 0x1A

Height: 23

BranchId: 3

Junction: 0x15

Block 0x17

Height: 22

BranchId: 1

Junction: 0x15Block 0x10

Height: 16

BranchId: 1

Junction: 0x2

Block 0x1B

Height: 17

BranchId: 4

Junction: 0x10

Fig. 3. An example illustrating the replication of a source blockchain within the relay contract. Headers are double-linked (denoted by arrows pointing in both
directions) as ETH Relay stores in each block header the parent hash as well as the hashes of its children. Green headers represent the current main chain of the
source blockchain. For the sake of simplicity, block hashes are in ascending order to make it clearly evident which block headers have been submitted before
others to the contract, e.g., block header 0x11 was submitted after block header 0x10, 0x1B after 0x1A, and so on. Block headers 0x1B, 0x14, 0x17, and 0x1A
are heads of the corresponding branch. Block headers 0x10, 0x12, and 0x15 represent branch junctions.

the relay contract performs the following four steps. First, it
determines the current main chain of the source blockchain
(see Section V-A). Second, the contract checks whether h is
unlocked (i.e., the lock period has passed) and part of the
main chain (see Section V-B). Third, the contract verifies that
h is confirmed by at least n succeeding block headers (see
Section V-C). Finally, it is checked whether tx is actually
included in block b by means of a Merkle proof of membership
(see Section V-D).

A. Determining the Main Chain

As mentioned in Section II, the main chain of a blockchain
may change over time as new blocks are appended to different
branches. In ETH Relay, the relay contract tracks the head of
each branch, i.e., the latest block header that was appended
to the branch. We consider Algorithm 1 again. Whenever a
new block header is received, it is added to the set of branch
heads (Line 11) as it either starts a completely new branch
or it becomes the new head of an existing branch in which
case it replaces its parent (Lines 12ff). The contract then re-
evaluates the branch head with the greatest difficulty storing
it in a global variable mainChainHead (Line 22). This branch
head represents the current head of the main chain of the source
blockchain.

B. Verifying Main Chain Membership

With the main chain determined, the relay contract now
needs to verify that header h is unlocked and actually part
of the main chain. As blockchains with multiple branches
represent a Directed Acyclic Graph (DAG) [19], determining
main chain membership boils down to a classical problem
in graph theory, the so-called reachability problem. In graph
theory, reachability refers to the ability of some node v to
reach some other node s within a graph [20]. Verifying the
membership of some block b on the main chain (which is a
specific branch of the DAG) is done by checking whether the
main chain’s head (i.e., the latest block of the main chain) can
reach block b.

As each block header contains a hash pointer to its parent,
we could simply trace from the main chain’s head all the way
back until we reach the requested block header or the genesis
block. However, depending on how far back the requested
block lies, this traversal can be expensive.

To make this traversal more cost-efficient, ETH Relay
follows a design inspired by the chain decomposition ap-
proach [20]. Within the relay contract, the source blockchain
(i.e., the DAG) is partitioned into its individual branches with
each branch being assigned a unique identifier. To track branch
memberships, each block header gets assigned the id of the
branch it belongs to. Furthermore, for each received header,
the relay contract stores a reference to the preceding branch
junction, i.e., a reference to the header where the branch of the
newly submitted block header branches off. This meta data is
stored in the fields m.branchId and m.junction, respectively.

In case the submitted header continues an existing branch,
m.branchId and m.junction are set to the corresponding field
values of its parent, as shown in Lines 14 and 15 of Algo-
rithm 1. If a new branch occurs, m.branchId gets assigned
the maximum branch id used so far incremented by one
and m.junction of the submitted header is set to the parent’s
hash (Lines 17 to 19).

The introduced helper fields m.branchId and m.junction
enable a more efficient search when verifying the membership
of some block header on the main chain, as the backwards
traversal can be executed in jumps from branch junction to
branch junction rather than from block header to block header.

Consider the example illustrated in Fig. 3 which shows
a source blockchain replicated within the relay contract. All
block headers between two consecutive branch junctions or
between a branch junction and a branch head have the same
branch id BranchId. Since a submitted header’s branch id is
either set to its parent’s branch id or to the maximum branch id
incremented by one, we know that all descendants of some
block header (i.e., headers that build upon this header) have a
branch id equal to or greater than the branch id of that header.
Analogous, all predecessors of some header have a branch id

equal to or lower than the branch id of that header.
This constraint can be used to efficiently verify whether

block header h is part of the main chain of the source
blockchain, i.e., whether the block header h is a predecessor
of the main chain’s head.

If block header h has a branch id that is greater than the
branch id of the main chain’s head (i.e., mainChainHead), we
know—without having to traverse any header—that header h
cannot be a predecessor of mainChainHead and thus not be
part of the main chain.

If block header h has the same branch id as mainChainHead,
we know that h is part of the main chain since header h and
mainChainHead belong to the same branch. Again, no block
header needs to be traversed.

In case the branch id of header h is smaller than the
branch id of the main chain’s head, we cannot know with
certainty whether h is part of the main chain. Consider block
header 0x16 in Fig. 3. Despite having a branch id lower than
header 0x1A (i.e., the head of the main chain), header 0x16
is not part of the main chain. Hence, the relay contract starts
at the main chain’s head and traverses each reachable branch
junction until a branch junction j is reached that has a branch id
lower than or equal to the branch id of header h. Note that the
next branch junction can be retrieved from the field m.junction
of the currently traversed branch junction.

If the branch id of j is lower than the branch id of h, we
know that h is not part of the main chain as h cannot be a
predecessor of junction j due to the higher branch id. In case
both headers have the same branch id, we know that they are
both part of at least one common branch. However, it can still
be the case that h is not part of the main chain. Consider
block headers 0x15 and 0x16 in Fig. 3. If 0x15 is the branch
junction j and 0x16 the header h, 0x15 is part of the main chain
while 0x16 is not. As such, the relay contract compares the
block heights of j and h. If h.blockHeight > j.blockHeight, h
is not part of the main chain. If h.blockHeight ≤ j.blockHeight,
j and h are either the same or j is a branch junction between
h and the main chain’s head. Hence, in both cases, h is part
of the main chain.

We note that it is completely sufficient to only traverse
branch junctions since all headers between two consecutive
branch junctions or between a branch junction and a branch’s
head always have the same branch id. As all headers in-
between are skipped, the relay contract only checks a few block
headers instead of traversing all headers between the header h
and the main chain’s head as done in a naı̈ve search.

C. Counting Block Confirmations

With main chain membership determined, it needs to be
verified that header h is already confirmed by a certain number
of block headers to increase the likelihood of the block
remaining part of the main chain [1]. For that purpose, the
relay contract maintains a reference to each header’s immediate
children. Whenever a new block header is received, the relay
contract adds its hash to its parent’s child list (Line 10 of

Algorithm 1). Typically, a header only has one child. If the
header is a branch junction, the list contains at least two
children (i.e., the hashes of the block headers branching off
from the header).

Of course, for each confirming block header the lock period
must be over. To verify the number of confirmations, the relay
contract temporarily stores a reference to the last unlocked
branch junction that was encountered while determining main
chain membership of header h. Starting at that branch junction,
all its descendants are traversed in the direction of the main
chain until enough unlocked (confirming) block headers are
found (as all headers between h and the starting point are
unlocked, these header count already as confirming headers).
If a block header is encountered that is locked or there is no
descendant to check (i.e., the main chain’s head is reached),
we know that h has not enough confirmations. In this case, the
SPV fails.

Once more, consider the example in Fig. 3. Assuming
membership of block header 0x11 should be verified and block
header 0x15 is the most recent unlocked branch junction.
Therefore, the starting point for the confirmation verification
is block header 0x18.

D. Verifying the Merkle Proof of Membership

After verifying that header h is unlocked, part of the source
blockchain’s current main chain and that h is confirmed by at
least n succeeding block headers, the relay contract checks the
Merkle proof of membership.

If the verification of the Merkle proof fails, transaction tx
is not part of the corresponding block b of header h. If it
is successful, tx is included within block b. Since the relay
contract has already verified h’s membership in the main chain
of the source blockchain and n headers succeeding h, it can be
concluded that transaction tx is in fact included in the source
blockchain.

By specifying a sufficiently large number of confirmations,
clients requesting a verification increase the probability that
transaction tx remains in the main chain of the source block-
chain. Further, as the verification procedure relies on the source
blockchain’s headers being exactly replicated within the relay
contract on the destination blockchain, it must be difficult to
tamper with the relay. The next section analyzes the security
of the relay.

VI. SECURITY ANALYSIS

This section provides a security analysis of ETH Relay
by looking at possible attack scenarios and investigating
consequences on the relay in case changes to the involved
blockchains occur.

For the following discussion, we suppose the set of off-
chain clients to remain static during an attack. Furthermore,
our analysis is based on the following assumptions: (a) no
off-chain client is guaranteed to follow the proposed relay
scheme, (b) the actions of many clients are driven by self-
interest, and (c) some clients may categorically deviate from

the scheme. Accordingly, we categorize off-chain clients into
three groups according to the BAR (Byzantine, Altruistic,
Rational) model [21]. This model has found application in
security analysis for blockchain protocols and extensions be-
fore, e.g., [22, 23]. Under this model, byzantine clients may
depart arbitrarily from the relay scheme for any reason, e.g.,
they may be faulty or may just follow strategies optimizing an
unknown utility function. Altruistic clients always follow the
proposed scheme, regardless of whether deviations would lead
to a higher profit. They exhibit no adversarial behavior. Finally,
rational clients are self-interested, aiming at maximizing their
profit according to a known utility function. These clients will
depart from the scheme if they expect doing so to yield a higher
profit than being honest.

A. Relay Poisoning

To reliably execute on-chain SPVs, the relay contract de-
pends on off-chain clients constantly submitting block headers.
Thus, an attacker may try to poison the relay contract with
invalid block headers. For that, the attacker must attempt a
chain re-organization within the relay contract according to
the consensus rules of the source blockchain, i.e., the attacker
must submit enough block headers such that these headers
form the new main chain within the relay contract. A chain
re-organization allows the attacker to request SPVs on invalid
block headers. For instance, an application relying on the relay
contract can be tricked into performing actions on the basis of
transactions that never occurred on the source blockchain.

Essentially, an attacker can choose between two approaches.
Either the attacker sends invalid block headers to the relay
contract or the attacker submits headers which are themselves
valid but belong to blocks containing invalid transactions (i.e.,
a header validation in case of a dispute would not detect any
anomaly). We discuss these two attack models in the next
subsections.

1) Incentive Attacks on Disputes:
Option one to achieve relay poisoning is for the attacker to sub-
mit illegal block headers while preventing other clients from
disputing these headers. The advantage of this approach is that
the attacker does not have to follow the source blockchain’s
consensus rules for creating block headers, e.g., the attacker
does not have to solve the PoW for each header. This enables
the attacker to create block headers at a much faster rate.
However, disputes of these illegal headers would be successful
since the block header validation would inevitably fail. Hence,
to launch a successful attack, the attacker needs to convince
all participating clients to not dispute any illegal headers for
the duration of the headers’ lock periods, e.g., by launching
incentive attacks [23].

Imagine all off-chain clients to act rationally. Even with in-
centives perfectly aligned, rational clients seeking to maximize
profit will deviate from the relay scheme if they expect doing
so to yield a higher profit. For instance, an attacker may offer
these clients an alternative reward that is more profitable than a
successful dispute of invalid block headers. Naturally, the more

clients participate in the relay, the more expensive the attack
becomes since each client needs to be convinced to follow the
attack. However, if all clients act rationally and the attacker
has sufficient funds, an attack may be successful. In general,
correct behavior is never guaranteed in systems that rely on all
clients acting rationally since clients can always find ways to
yield larger profits in a greater ecosystem [24].

Fortunately, the relay contract can determine the validity of
headers by itself. It just needs a single client to trigger this
validation in form of a dispute. Thus, if just one client acts
altruistically, incentive attacks always fail ensuring the correct
functioning of the relay scheme. As building open and per-
missionless systems that withstand all participants potentially
deviating from the intended rules appears to be fundamentally
impossible [24], an acceptable trade-off is a system that only
requires a single altruistic participant out of all participants.

2) Incentive Attacks on Submissions:
Option two for achieving relay poising is for the attacker to
submit block headers that are valid according to the source
blockchain’s header validation procedure but belong to blocks
containing illegal transactions. Disputing these headers would
not be successful since the header validation performed by the
relay contract does not include the validation of transactions.
Hence, the attacker could request SPVs on illegal transactions.
If other clients continue to submit the correct headers from the
source blockchain, the only way this attack can be successful is
if the attacker is able to create and submit valid block headers
at a faster rate than the network of the source blockchain, e.g.,
by launching a 51% attack [13].

Alternatively, the attacker may try to convince the other
clients to refrain from submitting block headers for the duration
of the attack. This way, the attacker’s block headers are the
only ones arriving at the relay contract on the destination
blockchain. If all clients act rationally, the attacker may
convince them to join the attack, e.g., by offering a bribe.
However—analogue to what has been discussed above—since
all clients need to be convinced, the cost of this attack grows
proportionally with the number of participants. Again, if there
is just one altruistic client that continuously submits the block
headers created by the network of the source blockchain, the
success of this attack is about as likely as a successful 51%
attack on the source blockchain.

B. Changes to the Source Blockchain

Besides deliberate attacks as discussed in the prior sections,
changes to the source blockchain may affect the reliability of
the relay contract as well.

When changing the block header validation procedure of the
source blockchain, it becomes either less or more restrictive.
In the first case, headers adhering to the new validation
rules would be rejected by the relay contract when being
received, or clients would be able to successfully dispute block
headers that are actually valid under the new rules. If the
header validation becomes more restrictive, newly introduced
validation rules are not enforced by the relay contract, possibly

leading to the acceptance of headers invalid under the new
rules. Thus, any change to the header validation procedure
of the source blockchain requires an update of the header
validation procedure performed within the relay contract. On
the other hand, if changes to the source blockchain do not
affect the header validation procedure, the relay contract does
not need to be updated.

In case the source blockchain’s network does not reach
consensus on an upcoming update, the source blockchain may
be split up, resulting in multiple instances of the same block-
chain. Technically, such instances are just branches originating
from the same blockchain. While the relay contract is able
to keep track of branches, only one branch is used for on-
chain SPVs. Hence, there may be a competition of multiple
instances of the source blockchain to form the main chain
within the relay contract. Which branch eventually overtakes
the others may be unclear at the time the blockchain is split
up. If multiple blockchain instances were to be supported,
additional deployments of the relay contract would be required.

VII. QUANTITATIVE ANALYSIS

To evaluate ETH Relay, we implemented a total of three
prototypes (Baseline, ETH Relay 1, and ETH Relay 2, re-
spectively) for Ethereum Virtual Machine (EVM)-based block-
chains such as Ethereum and Ethereum Classic.

As the name implies, Baseline acts as baseline for our
experiments. This prototype does not implement the validation-
on-demand pattern. Instead, it fully validates each block header
at submission as done by existing relays such as BTC Relay.
Furthermore, Baseline implements a naı̈ve search algorithm
for verifying main chain membership starting from the main
chain’s head, traversing each header until the header suppos-
edly containing the transaction is found or the genesis block
is reached.

In contrast, the prototypes ETH Relay 1 and ETH Relay 2
both implement the validation-on-demand pattern and imple-
ment the more efficient search for verifying main chain mem-
bership as explained in Section V-B. ETH Relay 2 additionally
applies the content-addressable storage pattern as explained in
Section IV-B.

The functionality of each prototype is summed up in Table 1.
A fully functional reference implementation of all concepts and
algorithms of the relay contract, an off-chain client written in
Go, and the evaluation are available as open-source projects
on GitHub123. For repeatability, the evaluation project not only
contains the three prototypes used for the evaluation but also
the evaluation scripts, the necessary block header data as SQL
dump, and the results.

A. Experiments

To evaluate the operating cost of the relay contract, we
used a Geth light client (version 1.9.10) to collect 154,445

1https://github.com/pantos-io/ethrelay
2https://github.com/pantos-io/go-ethrelay
3https://github.com/pantos-io/ethrelay-evaluation

TABLE 1
PROTOTYPE FUNCTIONALITY

Functionality Bas
eli

ne

ETH
Rela

y 1

ETH
Rela

y 2

Validation-on-submission X
Validation-on-demand X X
Content-adressable storage X
Naı̈ve search X
Optimized search X X

block headers containing 2,542 branches from the Ethereum
main network from 17.12.2019 to 14.01.2020. Note that we
also count uncle blocks as branches, since—when submitted
to the relay contract—they would introduce a new branch.
We then feed these block headers into the three prototypes
that are deployed as smart contracts on a private development
blockchain running on a Parity Ethereum node (version 2.6.8-
beta, –config dev). All three prototypes are initialized with
block #9121452 as genesis block.

In the first experiment, we analyze the operating cost (i.e.,
the cost of submitting block headers), the cost of on-chain
SPVs, and whether the source blockchain is correctly replicated
within the relay contract. For that, we continuously submit all
block headers of our dataset to each prototype. The headers
are submitted in ascending order according to their block
numbers and timestamp fields. After each submission, an SPV
on the genesis block (block #9121452) is triggered. Since
the replicated header chain within the relay contract grows
after each submission, the algorithm checking whether block
#9121452 is part of the main chain has to deal with a growing
number of headers. This allows us to observe the cost of
executing SPVs with an increasing search depth.

We measure the cost of each operation by the gas consump-
tion of its corresponding Ethereum transaction. Furthermore,
after each submission, we log the head of the main chain
and the currently submitted header’s branch id and branch
junction within the relay contract. This enables us to verify
that the submitted headers of the source blockchain (i.e., the
Ethereum main network) are correctly replicated within the
prototypes running on the destination blockchain (i.e., private
development blockchain).

To measure the cost of header disputes, we repeat the first
experiment, however, instead of performing an SPV after each
submission, we trigger a dispute on the genesis block (block
#9121452). For simplicity, as we are primarily interested in the
cost caused by the removal of branches, we remove the branch
originating from the disputed header regardless of the actual
result of the header validation. After each dispute, all removed
headers are resubmitted to restore the state. This allows us to
observe the dispute cost with a growing number of headers that
have to be pruned. The cost of each dispute (in gas) is logged
only for prototypes ETH Relay 1 and ETH Relay 2, since
prototype Baseline already performs the full header validation
at time of submission.

0

3.3

0.6

0.28

·106

G
as

C
on

su
m

pt
io

n

(a) Header submissions

0 50,000 1 · 105 1.5 · 105
0

2

4

6

·106

of submitted headers
(b) On-chain SPVs

0 20 40 60

2

3.3

·106

of submitted headers
(c) Header disputes

Baseline ETH Relay 1 ETH Relay 2

Fig. 4. Gas consumption of the relay contract

B. Results

Figure 4 depicts the results of our experiments. Figure 4(a)
shows the average gas consumption per header submission
for each prototype. With 612,348 gas (standard deviation of
6,592 gas), ETH Relay 1 achieves a significant cost reduction
of 82% over Baseline (average gas consumption of 3,369,653
gas, standard deviation of 5,101 gas). By applying the content-
addressable storage pattern, ETH Relay 2 reduces the average
gas consumption of ETH Relay 1 by 54%, resulting in gas
cost of 284,041 for every submitted header (standard deviation
of 3,679 gas). Compared to Baseline, ETH Relay 2 reduces
submission cost by 92%.

Figure 4(b) depicts the cost for executing on-chain SPVs
on the genesis block (block #9121452) for each prototype.
The x-axis denotes the number of succeeding block headers
that have already been submitted to the relay. Since SPVs are
always performed on the genesis block, the search algorithms
verifying the membership on the main chain have to cope with
an increasing search depth. Prototype Baseline using the naı̈ve
search algorithm reaches the private blockchain’s block gas
limit of 6.7 million gas already after 18,766 submitted headers.
ETH Relay 1 and ETH Relay 2 can cope with the growing
search depth at much lower cost.

Notably, ETH Relay 2 is slightly more expensive than
ETH Relay 1 due to the implementation of the content-
addressable storage pattern requiring the full block header to
be provided at every execution of an SPV. Hence, applying this
pattern is a trade-off between low submission cost and slightly
higher cost for SPVs. Notably, gas consumption is measured
in a worst-case scenario where each block header is submitted
to the relay even if it may not be part of the actual main
chain of the source blockchain. In practice, the verification
cost measured for ETH Relay 1 and ETH Relay 2 may be
much lower since clients may be reluctant to submit headers
which are not part of the main chain since these headers will
not yield a profit.

Figure 4(c) shows the dispute cost measured for ETH Re-
lay 1 and ETH Relay 2 (Baseline has no dispute cost at

all, since it does not implement the validation-on-demand
pattern). Despite the fact that a growing number of headers
has to be removed with each dispute, the dispute cost of both
prototypes temporarily declines. This is because freeing up
contract storage in Ethereum-based blockchains yields a so-
called gas refund which is given at the end of a successful
transaction execution [25]. From a certain point on (after nine
headers for ETH Relay 1 and 23 headers for ETH Relay 2),
the dispute cost starts to rise which is caused by the design
rationale that the gas refund is capped up to a maximum
of the half of the total gas consumed by a transaction [25].
Furthermore, as shown in the figure, ETH Relay 1 reaches
the block gas limit much earlier than ETH Relay 2. Notably,
the gas refund is given only after the successful execution
of a transaction, i.e., reaching the block gas limit makes the
transaction fail without yielding any gas refund. This is why
both graphs stop at around 3.3 million gas (last successful
disputes) before reaching the block gas limit. If a branch is
too long to be disputed within a single invocation, the dispute
function can be called multiple times with each invocation
pruning one part of the illegal branch.

In the first experiment, the branch id and branch junction
of each submitted header as recorded by each of the three
prototypes were logged. This data allows us to verify whether
all branches of the dataset have been correctly replicated within
the relays. In particular, we extracted all unique junctions from
the results as well as from our dataset. A comparison of both
lists shows that all 2,542 branches were correctly recognized
by the three prototypes.

VIII. CONCLUSION

For Ethereum-based blockchains, existing relay schemes are
either very costly, rely on authorized parties, or may not
be technologically feasible. As a solution to this problem,
we introduced ETH Relay, a novel relay scheme especially
suited for Ethereum-based blockchains. ETH Relay uses a
validation-on-demand pattern combined with a sophisticated
incentive structure to motivate honest participation. Our eval-
uation shows that ETH Relay is able to reliably verify the

inclusion of transactions across blockchains while reducing
the operating cost in comparison to traditional blockchain
relays by up to 92%. ETH Relay does not require trust in
a centralized party. As such, it provides a further step in
enabling decentralized interoperability between blockchains.
While the cost benefits of ETH Relay are evident for EVM-
based blockchains, the proposed relay scheme can be leveraged
whenever the block header validation of the source blockchain
is so costly that validating every single block header on
the destination blockchain is too expensive. Hence, the basic
approach presented in this paper could also be applied with
regard to other blockchain technologies.

In the current approach, every block header of the source
blockchain needs to be submitted to the destination blockchain.
In future work, in an effort to reduce submission cost even
further, we will investigate the feasibility of batch submis-
sions of Ethereum block headers using zero-knowledge proofs
similar to the approach taken by zkRelay for Bitcoin block
headers. Further, we will look into optimization opportunities
for verifying main chain membership. While there exist graph
algorithms capable of verifying main chain membership in
constant time, these algorithms often require a precomputation
phase with additional storage demands possibly increasing
submission cost [20]. In upcoming research, we will investigate
the trade-off between submission cost and optimizations of the
on-chain execution of SPVs.

ACKNOWLEDGEMENTS

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

REFERENCES

[1] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White
Paper, Accessed 2019-09-19. 2008. URL: https://bitcoin.org/bitcoin.pdf.

[2] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. “Runtime verifica-
tion for business processes utilizing the Bitcoin blockchain”. In: Future
Generation Computer Systems 107 (2020), pp. 816–831.

[3] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang.
“Fine-Grained, Secure and Efficient Data Provenance on Blockchain
Systems”. In: PVLDB 12.9 (2019), pp. 975–988.

[4] M. Sigwart, M. Borkowski, M. Peise, S. Schulte, and S. Tai.
“Blockchain-based Data Provenance for the Internet of Things”. In:
9th International Conference on the Internet of Things. ACM, 2019,
15:1–15:8.

[5] F. Tian. “An agri-food supply chain traceability system for China
based on RFID & blockchain technology”. In: 2016 13th International
Conference on Service Systems and Service Management. IEEE, 2016,
pp. 1–6.

[6] M. Mettler. “Blockchain technology in healthcare: The revolution
starts here”. In: 2016 IEEE 18th International Conference on e-Health
Networking, Applications and Services. IEEE, 2016, pp. 1–3.

[7] S. Schulte, M. Sigwart, P. Frauenthaler, and M. Borkowski. “Towards
Blockchain Interoperability”. In: Business Process Management: Block-
chain and Central and Eastern Europe Forum. Vol. 361. LNBIP.
Springer, 2019, pp. 1–8.

[8] V. Buterin. Chain Interoperability. Accessed 2019-09-19. URL: https:
/ / www . bubifans . com / ueditor / php / upload / file / 20181015 /
1539602892605747.pdf.

[9] BTC Relay. Accessed 2019-09-25. 2016. URL: http://btcrelay.org/.
[10] L. Luu. PeaceRelay: Connecting the many Ethereum Blockchains.

Accessed 2019-09-25. 2017. URL: https : / / medium . com / @loiluu /
peacerelay - connecting - the - many - ethereum - blockchains -
22605c300ad3.

[11] L. Luu, Y. Velner, J. Teutsch, and P. Saxena. “SmartPool: Practical
Decentralized Pooled Mining”. In: 26th USENIX Security Symposium.
USENIX, 2017, pp. 1409–1426.

[12] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber. “On the
privacy provisions of bloom filters in lightweight bitcoin clients”.
In: Proceedings of the 30th Annual Computer Security Applications
Conference. 2014, pp. 326–335.

[13] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bit-
coin and cryptocurrency technologies: A comprehensive introduction.
Princeton University Press, 2016.

[14] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. “A Survey
on Blockchain Interoperability: Past, Present, and Future Trends”. In:
arXiv:2005.14282 (2020).

[15] T. Baneth. Waterloo—a Decentralized Practical Bridge between EOS
and Ethereum (Part 1). Accessed 2019-11-19. 2019. URL: https://blog.
kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-
and-ethereum-1c230ac65524.

[16] T. Baneth. Waterloo—a Decentralized Practical Bridge between EOS
and Ethereum (Part 2). Accessed 2019-11-19. 2019. URL: https://blog.
kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-
and-ethereum-c25b1698f010.

[17] M. Westerkamp and J. Eberhardt. “zkRelay: Facilitating Sidechains
using zkSNARK-based Chain-Relays”. In: 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW). 2020.

[18] J. Eberhardt and S. Tai. “On or off the blockchain? Insights on off-
chaining computation and data”. In: 6th European Conference on
Service-Oriented and Cloud Computing. Vol. 10465. LNCS. Springer,
2017, pp. 3–15.

[19] F. Tschorsch and B. Scheuermann. “Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies”. In: IEEE Communica-
tions Surveys & Tutorials 18 (2016), pp. 2084–2123.

[20] R. Jin, N. Ruan, Y. Xiang, and H. Wang. “Path-Tree: An Efficient
Reachability Indexing Scheme for Large Directed Graphs”. In: ACM
Transactions on Database Systems 36.1 (2011).

[21] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C.
Porth. “BAR Fault Tolerance for Cooperative Services”. In: 20th ACM
Symposium on Operating Systems Principles. ACM, 2005, pp. 45–58.

[22] M. Herlihy, L. Shrira, and B. Liskov. “Cross-chain Deals and Adver-
sarial Commerce”. In: PVLDB 13.2 (2019), pp. 100–113.

[23] A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I. Eyal, P. Gazi,
S. Meiklejohn, and E. R. Weippl. “Pay-To-Win: Incentive Attacks
on Proof-of-Work Cryptocurrencies”. In: Cryptology ePrint Archive
(2019). https://eprint.iacr.org/2019/775.

[24] B. Ford and R. Böhme. “Rationality is Self-Defeating in Permissionless
Systems”. In: arXiv:1908.03999 (2019).

[25] G. Wood. Ethereum yellow paper. Accessed 2019-09-25. 2014. URL:
https://ethereum.github.io/yellowpaper/paper.pdf.

