Advanced Topics in Service-Oriented Computing and Cloud Computing

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong
@linhsolar
Outline

- Why do we need this course?
- What is the course about?
- Course administrative information
Services offer well-defined interfaces for consumers to
- access resources: contents, things, machines, and people
- provide functions: computation, networking, sensing, actuating, analytics, etc.
- offer diverse types of business models: pay-per-use, and subscription

Services are associated with and characterized by scalability, reliability, elasticity, etc.
Services are provisioned in distributed systems of IoT, edge/fog and cloud infrastructures
Services computing

Large-scale, distributed computational infrastructures and software systems

- Things
 - Software
 - People

Size matters
- Large-scale interactions
- Big data generated and consumed
- Big quantities to be managed
- Hard to control quality of data and services

Any * access behaviour does matter
- Unpredictable workload
- Scalability
- Elasticity
- Software-defined *

Economic factors do matter
- On-demand, pay-as-you-go
- Complex contracts
- Blockchain payment
Original definition from NIST

“This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models.”

Internet of Things (IoT)

- Things and Objects
 - Home
 - Shops
 - Official Business
 - Hospital
 - Factory
 - Infrastructure
 - Etc.

- How to make such things and objects being connected and interacting each other?

Current trends in SOC and Cloud

- Integration of Internet of Things (IoT)/cyber-physical systems, Cloud computing, and Fog/Edge-centric computing
 - Dispersed computing in cities
 - Cloud robotics
 - Connected Cars/Electronic Horizon
 - Autonomous cars/unmanned aerial vehicle (UAV)
 - Smart contracts with blockchain + IoT
 - IoT + Machine learning
Current trends in SOC and Cloud

- Intelligences from human and machines
 - Analytics services atop big data infrastructures

- Infrastructures for big data analytics + human interaction + artificial intelligence

- Human-centric robotics

- Predictive maintenance

- Cloud manufacturing + business service integration
Complex requirements and SOCloud focus

- Some key issues
 - High availability, data sharding, geographical multi-cloud/ and fog-edge load balancing, automatic formation of on-demand data centers and of IoT/edge services, etc.
 - Horizontal scalability in big data, elasticity coordination in multi-cloud environments, elasticity algorithms for fog and network function virtualization (NFV)
 - Complex connectivity and execution models
 - Algorithms for large-scale data ingestion/big data.
 - Performance and reliability monitoring and analysis

- Gaps between theoretical concepts and practical applications of advanced algorithms and techniques
Logistics scenario from DHL

Figure source: DHL Trend Research & Cisco Consulting Services, INTERNET OF THINGS IN LOGISTICS, 2015
Industrial internet

SOCloud Winter 2018
Video analytics + business applications/public security

Use Case 3: Video Analytics

Figure 4: Example of video analytics

Figure source:
We study and explore complex algorithms and techniques in SOC, Cloud, Fog/edge, and Big data systems.

It is a kind of “advanced distributed systems and software systems” focused SOC, Cloud, and fog/edge environments.
SOCloud – relevant courses

- Advanced Internet Computing
 - Give you some advanced technologies about SOC, Cloud Computing and (business) processes/workflows

- Advanced Services Engineering
 - Focus on services engineering techniques atop IoT, big data and clouds

- Distributed Systems Technologies:
 - Give you fundamental distributed technologies and how to use them for complex software systems
Course administration (1)

- Lectures + participant’s presentations + discussions
 - Held through the whole semester
 - But not every week – check the course website!
 - Make sure you reserve all slots for changes

- Who could participate in the course?
 - Master students in advanced stages (e.g., seeking for master thesis) in informatics and business informatics
 - PhD students: normal PhD track, PhD School of Informatics, and Doctoral Colleges
 - Students should have knowledge about fundamental distributed systems, internet computing and distributed computing technologies
Course administration (2)

- Learning methods
 - Discussion, individual and team work, literature and practical studies

- Evaluation methods
 - Assignments and a final examination

- Assignments
 - 4 home assignments resulting in some analysis summaries (presentations) and discussions
 - Each assignment: 10 points for presentation content and 10 points for answers/questions

- Oral final exam
 - Flexible – 30 minutes
Grades

- Assignments: 80 points
- Final oral examination: 20 points

<table>
<thead>
<tr>
<th>Point</th>
<th>Final mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>1 (sehr gut)</td>
</tr>
<tr>
<td>75-89</td>
<td>2 (gut)</td>
</tr>
<tr>
<td>56-74</td>
<td>3 (befriedigend)</td>
</tr>
<tr>
<td>40-55</td>
<td>4 (genügend)</td>
</tr>
<tr>
<td>0-39</td>
<td>5 (nicht genügend)</td>
</tr>
</tbody>
</table>

Failed ? → retake the final oral examination part!
THANKS! ANY QUESTION?
Thanks for your attention

Hong-Linh Truong
Faculty of Informatics
TU Wien
hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong