FogFrame: IoT service deployment and execution in the fog

Olena Skarlat,
Kevin Bachmann, Stefan Schulte

KuVS-Fachgespräch Fog Computing 2018

Distributed Systems Group, TU Wien, Austria
http://www.infosys.tuwien.ac.at/
What is a Fog Landscape?

A horizontal, system-level architecture that distributes computing, storage, control and networking functions closer to the users along a cloud-to-thing continuum.
Research Questions

Challenge: to create and support an execution environment for IoT applications in the fog landscape.

- What are the mechanisms to provide **virtualization** of resources?

- What are the methodologies and tools to realize **software** that manages a fog landscape and executes services?

- How to perform and optimize **resource provisioning** and execute services?
Fog Landscape Resource Model

Fog cells control IoT devices (sensors, actuators), can execute services

Fog control nodes control fog cells and execute services

A fog control node and connected fog cells form a **fog colony**, acts as a micro data center

Cloud-fog middleware manages cloud resources and supports fog colonies
FogFrame: A Fog Computing Framework

Functionality of FogFrame:

• Coordinated control over a fog landscape
• Monitoring and analysis of resources
• Service placement plan
• Deploy and execute applications
• (Re-)configuration of the fog landscape based on runtime events

https://github.com/keyban/fogframe
FogFrame Architecture

Fog cells and fog control nodes
Application Model

Distributed Data Flow* application

• Quality of Service (QoS) requirements, e.g., deadline on deployment and execution time
• Set of services to be deployed
• Each service is characterized by demands in CPU, RAM, and storage,
 its service type (e.g., a certain sensor equipment is needed, or it is a purely cloud service)

Service placement

Fog Service Placement Problem (FSPP)

Goal: to produce a service placement plan which maximizes the utilization of fog colonies while satisfying QoS

FSPP is solved by each head fog control node:

- Which services have to be executed in its **own fog colony**?
- Which services have to be executed **locally** on own resources of fog control node?
- Which services have to be propagated to the **closest neighbor colony**?
- Which services have to be propagated to the **cloud**?

FSPP is solved here
Fog Service Placement Problem (FSPP)

Variables: decision variables

Goal: maximize fog colony resources utilization, while adhering to QoS parameters

\[
\max \sum_{A_k} \ P(A_k) \left(\sum_{a_i} \left(\sum_{f_j} \ x_a^{f_j} + x^{F}_a \right) + |A_k| y_{A_k} \right)
\]

\[
P(A_k) = \frac{1}{D_{A_k} - w_{A_k}}
\]

Constraints:

- Resource capacities
- Number of deployed containers
- Adherence to QoS
- Propagation
Solutions of FSPP

• Exact mathematical method
• First-fit heuristic algorithm
• Genetic algorithm
Solutions of FSPP - Genetic Algorithm

Chromosome:

<table>
<thead>
<tr>
<th>Application A_1 services of A_1</th>
<th>Application A_2 services of A_2</th>
<th>...</th>
<th>Application A_k services of A_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>a_2</td>
<td>a_3</td>
<td>a_i</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Fitness: encourage if a chromosome fulfills constrains, apply penalties upon violations, “death penalties”

\[
F(c) = \sum_{\beta_p \in \Psi} \omega_{\beta_p} (1 - 2\delta_{\beta_p(c)}) + \sum_{\beta_\gamma \in \Gamma} \omega_{\beta_\gamma} (1 - 2\delta_{\beta_\gamma(c)}) - \omega_p D(c)
\]
Solutions of FSPP - Genetic Algorithm

Parameters:
• 80%-uniform crossover
• Tournament selection
• 2% random gene mutation
• 20% elitism rate
• Population size of 1000 individuals

Stopping condition:
• Positive fitness (no death penalties applied)
• Tolerance value: dividing the incremental variance of the fitness values by the maximum fitness value over generations
Challenge: how to deploy services in the heterogeneous environment of a fog landscape?

- Deployment in the cloud
- Deployment in the fog colonies

<table>
<thead>
<tr>
<th></th>
<th>Cloud</th>
<th>Fog colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td>VMs</td>
<td>Raspberry Pis</td>
</tr>
<tr>
<td>Processor architecture</td>
<td>64-bit Amazon Machine Image</td>
<td>ARM</td>
</tr>
<tr>
<td>Operating system</td>
<td>CoreOS</td>
<td>Hypriot</td>
</tr>
<tr>
<td>Base Docker image</td>
<td>FROM java:8</td>
<td>FROM hypriot/rpi-java</td>
</tr>
<tr>
<td>Service storage</td>
<td>Docker Hub</td>
<td>Shared storage</td>
</tr>
</tbody>
</table>
Service Deployment in Fog Colonies

Docker Hook instead of Docker-inside-Docker

Fog cells (FC)
• Redis FC container with a local database

Fog control nodes (FCN)
• Redis FCN with a local database
• Redis Shared with the shared repository of service images
Service Deployment in the Cloud

AWS cloud (Openstack cloud)

CoreOS with Docker runtime preconfigured
Evaluation

Metrics:

• Deployment time
• Utilization of resources (deployed containers)

Scenarios:

• Assessment of deployment time
• Different arrival patterns of application requests
• Different service placement algorithms
• Reaction on runtime events
Evaluation: different algorithms, arrival patterns

Constant arrival pattern of application requests: 10 services each 2 minutes

Pyramid arrival pattern: 5, 10, 15, 10, and 5 services each 2 minutes
Related Work

<table>
<thead>
<tr>
<th>Execution environment</th>
<th>Resource provisioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] de Brito et al. IoT testbed: Docker Swarm + OpenMTC M2M, VMs</td>
<td>Docker labels</td>
</tr>
<tr>
<td>[3] Yigitolu et al. „Foggy“, Raspberry Pis</td>
<td>Orchestration server on every node, first-fit algorithm</td>
</tr>
<tr>
<td>[8] Saurez et al. „Foglets“, simulated</td>
<td>Trigger-based: latency and resources</td>
</tr>
</tbody>
</table>
Conclusions

• Execution environment for IoT applications in a fog landscape
• FogFrame: placement, deployment, and execution of IoT applications
• Optimization problems for resource provisioning and service placement

Future work:

• Automated device discovery, fault tolerance mechanisms
• Availability, reliability of services and devices, cost in the optimization
• Heuristic and exact algorithms
Thank you for attention!

Olena Skarlat, MSc
Research Assistant
Vienna University of Technology
Institute of Information Systems
Argentinierstrasse 8/184-1, 1040 Vienna, Austria
T: +43 1 58801-18459 F: +43 1 58801-18491
E: o.skarlat@infosys.tuwien.ac.at
www.infosys.tuwien.ac.at
Related Work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
Related Work (ctnd)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
Our papers

Resource provisioning for IoT services in the fog
O. Skarlat, S. Schulte, M. Borkowski, P. Leitner
SOCA 2016

Towards QoS-aware fog service placement
O. Skarlat, M. Nardelli, S. Schulte, S. Dustdar
ICFEC 2017

Optimized IoT service placement in the fog
O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, P. Leitner
SOCA Journal 2017

FogFrame: Service placement, deployment, and execution in the fog
O. Skarlat, K. Bachmann, S. Schulte
FGCS Journal 2018 (under review)