Migrating IoT Processing to Fog Gateways

Daniel Happ, Sanjeet Raj Pandey, Vlado Handziski
Telecommunication Networks Group (TKN)
Technische Universität Berlin
Cloud centric Internet of Things

- Internet of Things:
 - Connect everything and everyone everywhere to everything and everyone else
 - Abstracting services of trillions of interconnected (sensor) devices
 - Providing interoperability in face of heterogeneity

- Sharing economy of heterogeneous sensors:
 - Sensor devices used for many applications over Internet
 - Middleware for efficiently distribution, storage and processing of sensor data

- Cloud for storage, processing, distribution
 - Flexibility
 - Reliability
 - Pay-as-you-go
Cloud centric IoT reference Architecture

- Producers, services, consumers loosely coupled by event queuing system
- Pub/sub well established data dissemination pattern for IoT
Advantages of Pub/Sub for IoT

- Publish/subscribe properties making it suitable for IoT:
 - Efficient monitoring: “Sense once, notify many”

- Decoupling:
 - Time decoupling
 - do not have to be online at the same time
 - Synchronization decoupling
 - asynchronous communication
 - Space decoupling
 - do not have to explicitly address messages (topic based in this work)
Limitations of Cloud centric IoT

- Placement on “other” edge of the network:
 - Usually not near the customer, but where economically feasible
 - Considerable (unnecessary) delay
 - Usually limited uplink throughput available

- Limited control over data:
 - Unknown or ambiguous privacy policies
 - Privacy protection laws

- Possible solution:
 - Leverage local processing on existing gateways
 - Offload processing on demand to Cloud
Fog-based IoT System Model

Large Scale
High Latency

Small Scale
Low Latency

Cloud
- Cloud Virtual Machines

Fog
- Fog Virtual Machines

Last Mile
- DSL, Cable, 3G
- Gateways

Sensors
- Direct Connection
- Sensor Network

VM
GW
S
A

D. Happ – IoT Migration 6
Examples of Gateway Hardware

<table>
<thead>
<tr>
<th>Device</th>
<th>CPU Clock</th>
<th>Memory</th>
<th>Storage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel NUC</td>
<td>1.3 GHz</td>
<td>16 GB</td>
<td>SATA</td>
<td>~$300</td>
</tr>
<tr>
<td>BeagleBone Black</td>
<td>1 GHz</td>
<td>512 MB</td>
<td>4GB EMMC, SD</td>
<td>$55</td>
</tr>
<tr>
<td>Raspberry Pi 3</td>
<td>1.2 GHz</td>
<td>1 GB</td>
<td>SD</td>
<td>~$35</td>
</tr>
<tr>
<td>TP-Link TL-WR841N</td>
<td>650 MHz</td>
<td>32 MB</td>
<td>4 MB</td>
<td>~$20</td>
</tr>
</tbody>
</table>

- Existing gateways potentially have unused processing and storage capabilities right at the edge
- Gateways still severely constrained:
 - Limited CPU power
 - Limited memory
 - Limited Storage
 - Limited Uplink Bandwidth
 - But: Usually no power constraints
Proposed Gateway Model

- Application view: Pub/sub is virtual bus
- Local broker enables local dissemination, processing, storage of messages
Problem Statement

- On demand offloading of processing tasks to Cloud necessary

- How can publish/subscribe help moving processing to fog gateways?
 - Task Migration
 - (Profiling)

- In this work:
 - (Architecture outline for offloading of IoT processing tasks)
 - Processing task offloading scheme on top of pub/sub
 - Proof-of-concept implementation and evaluation of offloading on top of MQTT
Sensor Data Processing Task

- Continuously running
- Input: Subscription on a set of input topics
- Computation: Arbitrary
- Output: Publication(s) on set of output topics

- Default place of processing: **Gateway**
- Offloaded to Cloud when resources not available
- Issuer defines additional constraints and requirements
3 distinct roles that interact with the system:

- Administrator defines computational constraints
- Issuer defines task and privacy and computation requirements
- Optimizer defines the optimization goal
Offloading Architecture

- Migration Framework executes decision to transfer
Virtual Sensor Migration Sequence

- Migration Request
- Transfer Program
- **Suspend** Sensor
 - **GetState**, Send State
- Delete
- Migration Response (accept)
- Verify Program
- **Setup Subscribe** (fill buffers)
- Acknowledge Program
- **SetState Resume**
- Acknowledge Start
Virtual Sensor Migration Interface

Interface provided by processing task:

- **setup** (called before launch to initialize task)
- **subscribe** (subscribe to input topics and fill buffers)
- **setState** (set initial state to representation given)
- **resume** (resume processing)
- **suspend** (stop processing)
- **getState** (get representation of the process state)
- **delete** (terminate the processing task)
Migration Prototype & Evaluation

Sample Application:
- Motion detection App
- Using python, cv2, MQTT
- Code: 3kb
- State (Background image): 21kb
- Resolution: 640x360, 2fps

Setup:
- Beaglebone Black (TU Berlin) + Cloud (Digital Ocean)
- Series of 30s with camera pictures repeated
- Process is running on gateway and migrated back and forth 64 times to and from Cloud (8 locations)
Evaluation of Migration Time

- Estimated time using throughput and RTT (red)
- Takeaway:
 - With current technologies: migration in few seconds
 - Estimate lower bound for migration time
Conclusion

- Full potential of IoT only fully utilized through increased edge processing
- Presented offloading scheme on top of pub/sub
- Prototypical implementation for MQTT
- Migration time in the order of seconds

Future work

- Policy (Placement Problem)
- Mapping of virtual bus to heterogeneous implementations (MQTT, Kafka, RabbitMQ, etc.)
- Broker Placement, Routing
Questions?
Optimization Problem Formulation (1)

- Optimizing for (monetary) cost:

\[
\min_{x_i \in \{0, 1\}} (c_{transfer} \cdot \omega_{tr} + c_{memory} \cdot \omega_{mem} + c_{cpu} \cdot \omega_{cpu}) \tag{1}
\]

where

\[
c_{transfer} = \sum_{i=1}^{n} x_i \left(r_{x_i,loc} + t_{x_i,loc} \right) + (1 - x_i)(r_{x_i,rem} + t_{x_i,rem}) \tag{2}
\]

\[
c_{memory} = \sum_{i=1}^{n} mem_i \cdot x_i \tag{3}
\]

\[
c_{cpu} = \sum_{i=1}^{n} cpu_i \cdot x_i \tag{4}
\]
Optimization Problem Formulation (2)

- Constraints of Gateway Hardware:

\[
\sum_{i=1}^{n} cpu_i \cdot (1 - x_i) \leq avail_{cpu} \cdot f_{cpu} \tag{5}
\]

\[
\sum_{i=1}^{n} mem_i \cdot (1 - x_i) \leq avail_{mem} \cdot f_{mem} \tag{6}
\]

\[
\sum_{i=1}^{n} rx_{i,rem} \cdot (1 - x_i) + tx_{i,loc} \cdot x_i \leq avail_{bw\downarrow} \cdot f_{rx} \tag{7}
\]

\[
\sum_{i=1}^{n} tx_{i,rem} \cdot (1 - x_i) + rx_{i,loc} \cdot x_i \leq avail_{bw\uparrow} \cdot f_{tx} \tag{8}
\]