TableVisor 2.0
Hardware-independent Multi Table Processing

Stefan Geißler, Thomas Zinner (University of Wuerzburg)
comnet.informatik.uni-wuerzburg.de
Stefan Geissler
TableVisor 2.0 – Hardware-independent Multi Table Processing
Stefan Geissler
Sensors and Devices
- Highly **heterogeneous, shifting environment** of devices
- Different applications with **different requirements**
- Constantly changing **topology**

Fog Layer
- **Distributed** compute, storage and network **resources**
- **Heterogeneous** environment
- **Limited resource** availability

Cloud Layer
- Centralized, **well structured environment**
- Basically **unlimited resources**
Stefan Geissler
TableVisor 2.0 – Hardware-independent Multi Table Processing

- **Well defined** communication protocol
- **Homogenous** switching hardware
 - Provide **full** OpenFlow support
 - **Respect** OpenFlow specification
 - Support **newest** OpenFlow version
Well defined communication protocol

Heterogeneous vendor specific devices
- Provide partial OpenFlow support
- Sometimes respect OpenFlow specification
- Support different OpenFlow versions or a work with a completely different protocol
- Separation of Concerns in the network
 - Controller
 - Switches
- Feature Limitation of switching hardware
 - Unsolvable use cases
 - Vendor dependence
TableVisor 2.0 – Hardware-independent Multi Table Processing

Stefan Geissler
TableVisor 2.0 – Hardware-independent Multi Table Processing

Stefan Geissler
TableVisor

- **Stateless** OpenFlow Proxy Layer
- **No modifications** required
- **Architecture**
 - Switch Endpoint
 - Message Processing
 - Controller Endpoint
- **Translates** OpenFlow Messages
- **Emulated** hardware switch
 - Multi table forwarding pipeline
 - Combined hardware functionality
 - Extension of flow table capacity

TableVisor 2.0 – Hardware-independent Multi Table Processing

Stefan Geissler
Message Processing

Type I Messages

- Simple **Request-Response**
 - Hello
 - Feature-Request
- No message forwarding

Type II Messages

- Message **modification** required
 - Flow-Mod
 - Flow-Stats
- Modified message is forwarded

TableVisor 2.0 – Hardware-independent Multi Table Processing

Stefan Geissler
Processing Flow-Stats-Requests

- **Distribution** of Flow-Stats-Requests
 - One new message per involved switch
 - Table to switch mapping
- **Aggregation** of Flow-Stats-Replies
Multi Table Pipeline Processing

- Combination of **functionalities from different switches**
 - Enables complex use cases
 - Exploits device heterogeneity
- Multi-table switch through **concatenation of hardware devices**
 - Alleviates flow rule explosion
 - Allows multi stage processing
Multi-Table Use Cases

Independent Action
- Single Table leads to rule explosion
- Example: MAC-Address Learning
 - Matching on Src-MAC to learn
 - Matching on Dst-MAC to determine output port

Multi-Stage Processing
- Single action per table
- Example: Stacked VLAN
 - Customer identification
 - Support multiple VLANs per customer

TableVisor 2.0 – Hardware-independent Multi Table Processing

Stefan Geissler
Aggregation of TCAM storage

Stateless architecture allows consistent updates and deletions
- Split by **priority**
- Assigned by **hashed match fields**

Avoid multimatching through **inter-device metadata**
Control Plane Impact

- Measured **flow-mod setup time** using HP 2920 hardware switch
 - Send 1-500 flow mods followed by barrier request
 - Setup time between barrier request and reply
- Control path delay increased by a constant offset
Current and Future Work

- Port of prototype software from Erlang to Java
 - Standalone software tool
 - Loxigen OpenFlow libraries

- Assessment of usability in P4 context

- Evaluation of further use cases
 - Device specific message processing
 - OpenFlow version translation
 - Dynamic resource and feature pooling
 - Local Repair

Any use case ideas?
I would really like to discuss them with you!
Conclusion

- **Stateless and transparent** OpenFlow proxy layer
 - Feature aggregation
 - Hardware table extension

- Control plane **requirements** vs. data plane **capabilities**
 - Exploitation of device heterogeneity
 - Enables more complex use cases

- Clear **separation of concerns**
 - Controller handles management
 - Switches provide specialized functionalities

- Future support for **dynamic resource pooling** and **local repair**
Pipeline Processing

TableVisor 2.0 – Hardware-independent Multi Table Processing
Stefan Geissler
Cost-efficient, flexible software

High performance hardware

Heterogeneity results in Trade-off
- Data plane performance
- Initial cost
- Flexibility and programmability
TableVisor 2.0 – Hardware-independent Multi Table Processing
Stefan Geissler

- **Well defined** communication protocol
- **Homogenous** switching hardware
 - Provide **full** OpenFlow support
 - **Respect** OpenFlow specification
 - Support **newest** OpenFlow version
Control Plane Impact

- Measured **flow-stats-request response time**
 - 300 flows
 - Single table
- Roughly 10 msec additional delay
Control Plane Impact

- Measured **flow-stats-request response time**
 - 3 x 100 flows
 - Multiple devices
- **No additional overhead** due to message processing
Data Plane Impact

- Measured **average delay** using Spirent C1
- 4 switch pipeline of HP 2920 switches