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What is this lecture about?

 Examine and study main frameworks, libraries 

and techniques for programming 

communication in distributed systems

 Understand pros and cons of different 

techniques for different layers and purposes

 Be able to select the right solutions for the right 

systems

 Be able to combine different techniques for a 

complex problem
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Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems: Principles and 

Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapters 3 & 4 

 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon 

Blair„Distributed Systems – Concepts and Design“, 5nd Edition

 Chapters 4,5,6 and 9

 Sukumar Ghosh, “Distributed Systems: An Algorithmic 

Approach”, Chapman and Hall/CRC, 2007

 Chapter 15

 Papers referred in the lecture

 Test the examples in the lecture 
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Outline

 Recall

 Message-oriented Transient Communication

 Message-oriented Persistent Communication

 Remote Invocation  

 Web Services

 Streaming data programming

 Group communication

 Gossip-based Data Dissemination

 Summary
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Recall

 One-to-one versus group communication

 Transient communication versus persistent 

communication

 Message transmission versus procedure call versus 

object method calls

 Physical versus overlay network
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MESSAGE-ORIENTED 

TRANSIENT COMMUNICATION
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Message-oriented Transient 

Communication at Transport Layer

 Socket interface – Socket APIs

 Very popular, supported in almost all programming 

languages and operating systems

 Berkeley Sockets (BSD Sockets)

 Java Socket, Windows Sockets API/WinSock, etc.

 Designed for low-level system, high-performance, 

resource-constrained communication
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Transport-level socket programming via socket 

interface

Transport-level socket programming via socket 

interface

 How does an application use the transport layer 

communication to send/receive messages?



Message-oriented Transient 

Communication at Transport Level (2)

 Client

 Connect, send and then receive data through sockets

 Server:

 Bind, listen/accept, receive incoming data, process 

the data, and send the result back to the client
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What is a socket:  a communication end point to/from 

which an application can send/receive data through the 

underlying network.

Q: Which types of information are used to describe the 

identifier of the “end point”?

Q: Which types of information are used to describe the 

identifier of the “end point”?



Socket Primitives
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Client-server interaction
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Q: How can  a multi-threaded server be implemented?Q: How can  a multi-threaded server be implemented?

Connection-oriented communication interaction

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Example

 Simple echo service

 Client sends a message to a server

 Server returns the message

 Source code: 

https://github.com/tuwiendsg/distributedsystems

examples/tree/master/SimpleEchoSocket
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Q: What if connect() happens before listen()/accept()?Q: What if connect() happens before listen()/accept()?

https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/SimpleEchoSocket


Complex communication, large-scale number processes in  the 

same application 

Complex communication, large-scale number processes in  the 

same application 

Message-oriented Transient 

Communication at the Application 

level

Why are transport level socket programming 

primitives not good enough?

Why are transport level socket programming 

primitives not good enough?
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Message-passing Interface (MPI)

 Designed for parallel processing: http://www.mpi-forum.org/

 Well supported in clusters and high performance computing 

systems

 One-to-one/group  and synchronous/asynchronous communication
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 Basic MPI concepts 

 Communicators/groups to determine a set of processes that 

can be communicated: MPI_COMM_WORLD represents all mpi

processes

 Rank: a unique identifier of a process 

 A set of functions to manage the execution environment

 Point-to-point communication functions

 Collective communication functions

 Functions handling data types 

 Basic MPI concepts 

 Communicators/groups to determine a set of processes that 

can be communicated: MPI_COMM_WORLD represents all mpi

processes

 Rank: a unique identifier of a process 

 A set of functions to manage the execution environment

 Point-to-point communication functions

 Collective communication functions

 Functions handling data types 



Message-passing Interface (MPI)
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Function Description

MPI_Init Initialize the MPI execution environment

MPI_Comm_size Determine the size of the group given a communicator

MPI_Comm_rank Determine the rank of the calling process in group

MPI_Send() Send a message, blocking mode

MPI_Recv() Receive a message, blocking mode

…

MPI_Bcast() Broadcast a message from a process to others

MPI_Reduce() Reduce all values from all processes to a single value

…

MPI_Finalize() Terminate the MPI execution environment



Example

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0)  {

printf("I am %d: We have %d processors\n", myid, 

numprocs);

sprintf(output, "This is a message sending from %d", 

i);    

for(i=1;i<numprocs;i++)

MPI_Send(output, 80, MPI_CHAR, i, 0, 

MPI_COMM_WORLD);

}

else {

MPI_Recv(output, 80, MPI_CHAR, i, 0, 

MPI_COMM_WORLD, &status);

printf("I am %d and I receive: %s\n", myid, output);

}

source=0;

count=4;

if(myid == source){

for(i=0;i<count;i++)

buffer[i]=i;

}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COM

M_WORLD);

for(i=0;i<count;i++) {

printf("I am %d and I receive: %d \n",myid, buffer[i]);  

}

printf("\n");

MPI_Finalize();
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Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/mpi-ex



MESSAGE-ORIENTED

PERSISTENT 

COMMUNICATION
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Message-oriented Persistent 

Communication – Queuing Model

 Message-queuing systems or Message-

Oriented Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent but asynchronous messages

 Scalable message handling

 Different communication patterns

 Several Implementations
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Message-oriented Persistent 

Communication – Queuing Model

Communication models with time (un)coupling
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Operations

PUT

GET

POLL

NOTIFY

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Q1: Give an example

of case (d)

Q1: Give an example

of case (d)



Message-oriented Persistent 

Communication – Queuing Model
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Practical work: JMS - http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html  Practical work: JMS - http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html  



Message Brokers
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles

and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles

and Paradigms, 2nd Edition, 2007, Prentice-Hall 

 Publish/Subscribe: messages are matched to applications

 Transform: messages are transformed from one format to 

another one suitable for specific applications



Example – Advanced Message 

Queuing Protocol (AMQP)

 http://www.amqp.org
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Apache Qpid™Apache Qpid™



Content-Based  Message Routing: 

AMQP

22

Figs source: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guid

e/chap-Messaging_User_Guide-Exchanges.html

Figs source: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guid

e/chap-Messaging_User_Guide-Exchanges.html

Note: defined in AMQP 0-10

But not in AMQP 1.0
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Example: AMQP

ConnectionFactory factory = new ConnectionFactory();

factory.setUri(uri);

Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {

String message = "Hello distributed systems guys:  "+i;

channel.basicPublish("", QUEUE_NAME, null, 

message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

new Thread().sleep(5000);

}

channel.close();

connection.close();

ConnectionFactory factory = new ConnectionFactory();

factory.setUri(uri);

Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false, 

false, null);

System.out.println(" [*] Waiting for messages");

QueueingConsumer consumer = new 

QueueingConsumer(channel);

channel.basicConsume(QUEUE_NAME, true, 

consumer);

while (true) {

QueueingConsumer.Delivery delivery = 

consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.println(" [x] Received '" + message + "'");

}
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Source code: 

https://github.com/cloudamqp/java-

amqp-example, see also the demo in 

the lecture 2



REMOTE INVOCATION
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Remote Procedure Call

How can we call a procedure in a remote process

in a similar way  to a local procedure? 
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Remote Procedure Call (RPC): hides all complexity in 

calling remote procedures

 Well support in 

many systems 

and programming 

languages

Q1: Which types of 

applications are suitable for 

RPC?

Q1: Which types of 

applications are suitable for 

RPC?Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Message format and data structure 

description
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 Passing parameters and results needs agreed message 

format between a client and a server 

 Data types may have different representations due to 

different machine types (e.., SPARC versus Intel x86)

Marshaling/unmarshalling describes the process 

packing/unpacking parameters into/from messages
(note: encoding/decoding are also the terms used)

Interface languages can be used to describe the  

common interfaces between clients and server



Generating stubs
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Interface 

description

Interface 

description

Message 

Format

Message 

Format

Generating
Stubs: Code for 

marshalling/unmarshalling

Stubs: Code for 

marshalling/unmarshalling

Transport informationTransport information e.g., HTTP, TCP, UDP

e.g., IDL, XML

e.g., XDR, XML



Detailed Interactions
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



One-way RPC

DS WS 2014 29

Time
Call local procedure

Server

Client

Message

Call and continue



Asynchronous RPC
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Recall: (A)synchronous 

communication

Q1: How can asynchronous 

RPC be implemented 

Recall: (A)synchronous 

communication

Q1: How can asynchronous 

RPC be implemented 

Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 



Asynchronous RPC
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Two asynchronous RPCs/ Deferred synchronous RPC

Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 
Q: List some possible failures 

in RPC interactions.

Q: List some possible failures 

in RPC interactions.



Some RPC implementations

 rpcgen – SUN RPC

 IDL for interface description

 XDR for messages

 TCP/UDP for transport

 XML-RPC

 XML for messages

 HTTP for transport

 JSON-RPC

 JSON for messages

 HTTP and/or TCP/IP for transport

 Tools: Apache Thrift - http://thrift.apache.org/
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Remote Meothd Invocation/Remote 

Object Call

 Remote object method invocation/call

 RPC style in object-oriented programming
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RMI ClientRMI Client

RMI Registry

RMI ServerRMI Server

locate objects

invoke

object

methods

publish objects

obj

obj

obj

obj



Example of RPC
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AddClient
Add(i,j) AddServer

$rpcgen –N –a add.x

program ADD_PROG { 

version ADD_VERS { 

int add(int , int ) = 1; 

} = 1; 

} = 0x23452345;

 add.h

 add_xdr.c

 add_client.c

 add_clnt.c

 add_server.c

 add_svc.c

 add.h

 add_xdr.c

 add_client.c

 add_clnt.c

 add_server.c

 add_svc.c

Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/rpcadd-ex



WEB SERVICES

DS WS 2014 35



Web services (1)

 Service: common software functionalities/capabilities 

offered through well-defined interfaces and consistent 

usage policies 

 Socket APIs, RPC, or RMI can be used to implement 

„services“, but

 Do not work very well in the Web/Internet environment

 Do not support  well the integration of different software 

systems
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Web Services: “A Web service is a software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface 

described in a machine-processable format (specifically WSDL). Other systems 

interact with the Web service in a manner prescribed by its description using SOAP-

messages, typically conveyed using HTTP with an XML serialization in conjunction 

with other Web-related standards.” -- http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/#whatis

Web Services: “A Web service is a software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface 

described in a machine-processable format (specifically WSDL). Other systems 

interact with the Web service in a manner prescribed by its description using SOAP-

messages, typically conveyed using HTTP with an XML serialization in conjunction 

with other Web-related standards.” -- http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/#whatis



Web services (2)
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Applications

Applications

Web Services

SOAP/WSDL              Web API/REST

HTTP, SMTP, 

RMI, …

XML, JSON, 

etc.

URIs Identifiers, data format, 

transportation

Protocols/interfaces

Services and descriptions

SOAP  versus REST: http://wwwconference.org/www2008/papers/pdf/p805-pautassoA.pdfSOAP  versus REST: http://wwwconference.org/www2008/papers/pdf/p805-pautassoA.pdf

 Why Web services are important in distributed systems?

 Support interoperability

 Hide system complexity and implementation detail

 Enable easy integration of diverse and distributed 

software components 

 Why Web services are important in distributed systems?

 Support interoperability

 Hide system complexity and implementation detail

 Enable easy integration of diverse and distributed 

software components 



Web Service

XML-based Web service 

communication protocols

 Through runtime, clients and services can send and receive SOAP messages 

different communication patterns

 SOAP messages (XML-based) like an envelope with a header and a body

 SOAP messages are transported using different transport protocols

 WSDL is used to describe a Web service 

 Usually a Web service is hosted in an application server/container, which supports 

complex messages dispatching and handling 
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SOAP

Web ServiceClient

Runtime
(Proxy, Listener, etc.)

H
Transport 

(HTTP, SMTP, …)

Transport 
(HTTP, SMTP, …)

SOAP

Service Business 

Logic

Runtime



Architectural Design - REST

 Resources are identified and accessed through URIs 

 Resources are data and functionality

 A Web service manages a set of resources

 A client and a service exchange representations of 

resources via standardized interface and protocols

 Assume one-to-one communication/client-server model
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GET (list/retrieve)

PUT (update/create)

POST (create/update)

DELETE (remove)

Web Service

URIi: Resourcei

Web 

Service 

Client

URIk: Resourcek



Web Services programming

 From WSDL to code, e.g.,

 Java API for XML Web Services  (JAX-WS)

 Generate Web service stubs from WSDL files

 E.g., wsdl2java

 Using annotations

 XML-based Web services (SOAP)

 JAX-WS annotations (JSR 181, JSR 224)  

 @WebService, @WebMethod

 REST 

 Java API for RESTful Web Services, JSR-311

 @Path, @GET, @POST, …

 Well-supported in many programming languages
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Samples
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Source: https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-

service-pom/rSYBL-analysis-

engine/src/main/java/at/ac/tuwien/dsg/rSybl/analysisEngine/webAPI/SyblC

ontrolWS.java

Source: 

http://svn.apache.org/viewvc/cxf/trunk/distribution/sr

c/main/release/samples/java_first_jaxws/src/main/ja

va/demo/hw/server/HelloWorldImpl.java?view=mark

up

JAX-WS REST 



Applications: Service-oriented

Architecture/Computing
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Source: Web Services: Concepts, 

Architecture and Applications, 

G. Alonso, F. Casati, H. Kuno, V. Machiraju

Springer Verlag 2004

Chapter 5, 



Applications – Cloud Computing

 Cloud resources

 Files, storage, compute machines, middleware, etc.

 Resources offered via RESTful models

 Many cloud services support REST APIs

 Examples
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STREAMING DATA

PROGRAMMING
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Data stream programming

 Data streams can be used for

 Continuous media (e.g., video)

 Discrete media (e.g., stock market events/twitter

events)
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Data stream: a sequence of data units

e.g. reading bytes from a file and send bytes via a TCP 

socket 



Timing issues

 Timing issues

 Asynchronous transmission mode

 no constraints on when the transmission completes

 Synchronous transmission mode: 

 maximum end-to-end delay defined for each data unit

 Isochronous transmission

 maximum and minimum end-to-end delay defined
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m3 m2 m1 m3 m2 m1

time

client

Streaming 

data

server

When the

transmission

of m2 

completes

End-to-end delay



Multiple streams

Complex stream/multiple streams data processing
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clients

Streaming 

data m

server

m3 m2 m1

… … …

s3 s2 s1
Streaming 

data s

m1m1

……

s1s1

m2m2

……

s2s2

m3m3

……

s3s3

EsperEsper StormStorm S4S4 Gigaspaces XAPGigaspaces XAP StreambaseStreambaseTools



Example: Complex event

processing with Esper

http://esper.codehaus.org/esper. 
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Esper Runtime

Engine

Esper Runtime

Engine

select  clientEndpoint, serviceEndpoint

from InteractionEvent.win:length(100) 

where messageType="Request"  

select  clientEndpoint, serviceEndpoint

from InteractionEvent.win:length(100) 

where messageType="Request"  

ResultHandler

public class NumberCallHandler extends 

BaseResultHandler {

@Override

public void update(Map[] insertStream, 

Map[] removeSteam) {

///….

}

}

Streaming event data

public class InteractionEvent {

public final static String REQUEST = "Request";

public final static String RESPONSE = "Response";

private String clientEndpoint=null;

private String activityURI=null;

private String serviceEndpoint=null;

private String messageCorrelationID=null;

private String messageType=null;

///….

}

EPL (Event 

Processing 

Language)

http://esper.codehaus.org/esper


GROUP COMMUNICATION
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Group communication
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Atomic Multicast: Messages are received either by every 

member or by none of them

Reliable multicast: messages are delivered to all members 

in the best effort – but not guaranteed.

 Group communication use multicast messages

 E.g., IP multicast or application-level multicast



Atomic Multicast

Q1: Give an example of atomic multicastQ1: Give an example of atomic multicast
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Sender’s program Receiver’s program

i:=0; if m is new

do i ≠ n accept it;

send message to member[i]; multicast m;

i:= i+1 [] m is duplicate discard m

od fi

Source: Sukumar Ghosh, Distributed Systems: An Algorithmic Approach,Chapman and Hall/CRC, 2007Source: Sukumar Ghosh, Distributed Systems: An Algorithmic Approach,Chapman and Hall/CRC, 2007

Q2: How do we know “m is new”?Q2: How do we know “m is new”?

Example of implementing multicast using one-to-one communication



Application-level Multicast 

Communication (1)

 Application processes are organized into an 

overlay network, typically  in a mesh or a tree
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Source: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) , 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Source: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) , 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Multicast data path



Application-level Multicast 

Communication (2)
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Sources: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) , 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Sources: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) , 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832



Gossip-based Data Dissemination 

(1)

Why gossip? E.g., https://www.youtube.com/watch?v=OPYhk_NbEtA#t=22

It can spread messages fast and reliably 
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Source: Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41, 5 (October 2007), 

2-7. DOI=10.1145/1317379.1317381 http://doi.acm.org/10.1145/1317379.1317381 

Source: Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41, 5 (October 2007), 

2-7. DOI=10.1145/1317379.1317381 http://doi.acm.org/10.1145/1317379.1317381 



Gossip-based Data Dissemination 

(2)

 Give a system of N nodes and there is the need 

to send some data items

 Every node  has been updated for data item x

 Keep x in a buffer whose maximum capability is  b

 Determine a number of times t that the data item x 

should be forwarded

 Randomly contact f other  nodes (the fant-out) and 

forward x to these nodes 
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Different configurations of (b,t,f) create different algorithms

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent Massoulieacute;, "Epidemic Information Dissemination in Distributed 

Systems," Computer, vol. 37, no. 5, pp. 60-67, May 2004, doi:10.1109/MC.2004.1297243

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent Massoulieacute;, "Epidemic Information Dissemination in Distributed 

Systems," Computer, vol. 37, no. 5, pp. 60-67, May 2004, doi:10.1109/MC.2004.1297243



Summary

 Various techniques for programming 

communication in distributed systems

 Transport versus application level programming

 Transient versus persistent communication

 Procedure call versus messages

 Web Services

 Streaming data 

 Multicast and gossip-based data dissemination

 Dont forget to play with some simple examples 

to understand existing concepts

DS WS 2014 56



57

Thanks for 
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong
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