mn Distributed Systems, WS 2014

Communication in Distributed Systems —
Programming

Hong-Linh Truong
Distributed Systems Group,
Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

DS WS 2014 1

mn What is this lecture about?

» Examine and study main frameworks, libraries
and techniques for programming
communication in distributed systems

= Understand pros and cons of different
techniques for different layers and purposes

= Be able to select the right solutions for the right
systems

= Be able to combine different techniques for a
complex problem

DS WS 2014 2

mn Learning Materials

= Main reading:
= Tanenbaum & Van Steen, Distributed Systems: Principles and
Paradigms, 2e, (c) 2007 Prentice-Hall
= Chapters 3 &4

= (George Coulouris, Jean Dollimore, Tim Kindberg, Gordon
Blair,Distributed Systems — Concepts and Design®, 5nd Edition
= Chapters 4,5,6 and 9

» Sukumar Ghosh, “Distributed Systems: An Algorithmic
Approach”, Chapman and Hall/CRC, 2007

= Chapter 15

= Papers referred in the lecture
= Test the examples in the lecture

DS WS 2014 3

mn Outline

= Recall

» Message-oriented Transient Communication
» Message-oriented Persistent Communication
= Remote Invocation

= Web Services

» Streaming data programming

= Group communication

= (Gossip-based Data Dissemination

= Summary

DS WS 2014 4

mn Recall

* One-to-one versus group communication

* Transient communication versus persistent
communication

= Message transmission versus procedure call versus
object method calls

= Physical versus overlay network

DS WS 2014 S

MESSAGE-ORIENTED
TRANSIENT COMMUNICATION

DS WS 2014 6

BEJEl Message-oriented Transient
Communication at Transport Layer

= How does an application use the transport layer
communication to send/receive messages?

Transport-level socket programming via socket
interface

= Socket interface — Socket APls

» Very popular, supported in almost all programming
languages and operating systems

» Berkeley Sockets (BSD Sockets)
= Java Socket, Windows Sockets API/WinSock, etc.

» Designed for low-level system, high-performance,

resource-constrained communication
DS WS 2014 7

mn Message-oriented Transient
Communication at Transport Level (2)

What is a socket: a communication end point to/from
which an application can send/receive data through the
underlying network.

= Client
» Connect, send and then receive data through sockets

= Server:

» Bind, listen/accept, receive incoming data, process
the data, and send the result back to the client

Q: Which types of information are used to describe the
identifier of the “end point™?

DS WS 2014 8

mn Socket Primitives

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2014 9

mn Client-server interaction

Connection-oriented communication interaction

Server

bind | listen - »{ accept

Synchronization point ——

) . \
; Communication \

\ <

socket »connect» write ——» read | close

Client L Q

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Q: How can a multi-threaded server be implemented?

DS WS 2014 10

[NISTRIBUTED SYSTEMS (GROUT

mn Example

= Simple echo service
= C(Client sends a message to a server
= Server returns the message

= Source code:

Q: What if connect() happens before listen()/accept()?

DS WS 2014 11

https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/SimpleEchoSocket

mn Message-oriented Transient
Communication at the Application
level

Complex communication, large-scale number processes in the
same application

Why are transport level socket programming
primitives not good enough??

DS WS 2014 12

mn Message-passing Interface (MPI)

» Designed for parallel processing: http://www.mpi-forum.org/

= Well supported in clusters and high performance computing
systems

= One-to-one/group and synchronous/asynchronous communication

= Basic MPI concepts

>

YV V V V

Y

Communicators/groups to determine a set of processes that
can be communicated: MPI_COMM_WORLD represents all mpi
processes

Rank: a unique identifier of a process

A set of functions to manage the execution environment
Point-to-point communication functions

Collective communication functions

Functions handling data types

DS WS 2014 13

mn Message-passing Interface (MPI)

N L

MPI_Init Initialize the MPI execution environment
MPI_Comm_size Determine the size of the group given a communicator
MPI_Comm_rank Determine the rank of the calling process in group
MPI_Send() Send a message, blocking mode

MPI_Recv() Receive a message, blocking mode

MPI1_Bcast() Broadcast a message from a process to others
MPI_Reduce() Reduce all values from all processes to a single value
MPI1_Finalize() Terminate the MPI execution environment

DS WS 2014 14

mn Example

MPI1_Init(&argc,&argv); source=0:
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); count=4;
MPI_Comm_rank(MPI_COMM_WORLD,&myid); if(myid == source){
if(myid == 0) { for(i=0;i<count;i++)
printf("l am %d: We have %d processors\n", myid, buffer[i]=i;
nuMprocs); }

sprintf(output, "This is a message sending from %d",

1);
) MPI1_Bcast(buffer,count,MPI_INT,source,MPI_COM

for(i=1;i<numprocs;i++) M_WORLD);
MPI1_Send(output, 80, MPI_CHAR, i, O, for(i=0;i<count;i++) {
MPI_COMM_WORLD); . . _ _
printf("l am %d and | receive: %d \n",myid, bufferi]);
}
}
else { .
printf("\n");
MPI_Recv(output, 80, MPI_CHAR, i, O, N
MPI_COMM_WORLD, &status); MPI_Finalize();
printf("l am %d and | receive: %s\n", myid, output);
}

Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/mpi-ex

DS WS 2014 15

[NISTRIBUTED SYSTEMS (GROUT “ e

MESSAGE-ORIENTED
PERSISTENT
COMMUNICATION

DS WS 2014

Bl Message-oriented Persistent
Communication — Queuing Model

» Message-queuing systems or Message-
Oriented Middleware (MOM)

= Well-supported in large-scale systems for
= Persistent but asynchronous messages
» Scalable message handling
= Different communication patterns

= Several Implementations

DS WS 2014 17

Bl Message-oriented Persistent
Communication — Queuing Model

Communication models with time (un)coupling

Sender Sender
running running

— — -
e =
-

Receiver Receiver
running passive
(a) (b)

Sender
passive

Receiver
running

()

Sender
passive

Q1: Give an example
of case (d)

PUT

__——

Receiver
passive

(d)

> GET
POLL
NOTIFY

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2014

18

[NISTRIBUTED SYSTEMS (GROUT “

Bl Message-oriented Persistent
Communication — Queuing Model

Look-up
| transport-level Receiver

/ address of queue

layer Y layer

Sender

g h address '
Local OS N Address look-up Local OS ?
database) Sy
_ Transport-level
""""""""""""" address
Network

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Practical work: JMS - http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

DS WS 2014 19

[NISTRIBUTED SYSTEMS (GROUT “

mn Message Brokers

= Publish/Subscribe: messages are matched to applications

*» Transform: messages are transformed from one format to
another one suitable for specific applications

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ [/
\ \ [[

p?;z*::.; ==
E H \> -
T { U L = grs E‘ (OS]

I IS S I) 1

Network

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles
DS WS 2014 and Paradigms, 2nd Edition, 2007, Prentice-Hall

Queuing

||| <€

OS

IEJEl Example — Advanced Message
Queuing Protocol (AMQP)

= http://www.amqp.org

BhRabbit Apache Qpid™

DS WS 2014 21

Il Content-Based Message Routing:
AMQP

Producer

Producer: routing key =

Broker

Bindings:

Exchange:

Bindings: : L 4 .
binding key =

KEY

S m

routing key FaLir

usa.news

v kery

usa.weather

europe.news | europe.weather

Broker

Note: defined in AMQP 0-10
But not in AMQP 1.0

Bindings:

binding kiy - binding key = binding key =

. . . ! B
Figs source: https://access.redhat.com/site/documentation/en- LTEwS #.weather el

US/Red_Hat_Enterprise_ MRG/1.1/html/Messaging_User_Guid
e/chap-Messaging _User_Guide-Exchanges.html

DS WS 2014 29

mn Example: AMQP

ConnectionFactory factory = new ConnectionFactory();
factory.setUri(uri);
Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {
String message = "Hello distributed systems guys: "+i;

channel.basicPublish("", QUEUE_NAME, null,
message.getBytes());

System.out.printin(" [x] Sent™ + message + "");

new Thread().sleep(5000);

channel.close();

connection.close();

Source code:
https://github.com/cloudamqp/java-
amqp-example, see also the demo in
the lecture 2

DS WS 2014 23

ConnectionFactory factory = new ConnectionFactory();
factory.setUri(uri);
Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false,
false, null);

System.out.printin(" [*] Waiting for messages");

QueueingConsumer consumer = new
QueueingConsumer(channel);

channel.basicConsume(QUEUE_NAME, true,
consumer);

while (true) {

QueueingConsumer.Delivery delivery =
consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.printin(" [x] Received

}

+ message +"");

REMOTE INVOCATION

DS WS 2014 24

mn Remote Procedure Call

How can we call a procedure in a remote process
In a similar way to a local procedure?

Remote Procedure Call (RPC): hides all complexity in
calling remote procedures

Wait for result

/

Client = Well support in

Call remote many systems
procedure and programming
languages
Request
Server --------------

Call local procedure Time —» | Q1: Which types of
and return results applications are suitable for

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — RPC’)
Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall i

DS WS 2014 25

ISl Message format and data structure
description

= Passing parameters and results needs agreed message
format between a client and a server

Marshaling/unmarshalling describes the process

packing/unpacking parameters into/from messages
(note: encoding/decoding are also the terms used)

» Data types may have different representations due to
different machine types (e.., SPARC versus Intel x86)

Interface languages can be used to describe the
common interfaces between clients and server

DS WS 2014 26

mn Generating stubs

{Transport information J e.g., HTTP, TCP, UDP

¢

Interface : Stubs: Code for
(description J ‘ Generating =) | marshalling/unmarshalling
e.g., IDL, XML
Message
(Format J e.g., XDR, XML

DS WS 2014 27

mn Detailed Interactions

Client machine Server machine
Client process Server process
1. Client call to :
orocedure Implementation 6. Stub makes
of add local call to "add"
Server stub
L " K=add(ij) — .] 1 k=add(ij) —
L Client stub el
« Il un / « (1]
proc: "add proc: "add
int: _val() 2. Stub builds int__val() S S UNPACKS
int.__val(j) message int:__val()) feseage
A
. proc: "add’ 4. Server OS
_ int.__val()) to server stub

3. Message is sent
across the network

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2014 28

JISTRIBUTED 5Y MS Ly ROLT

mn One-way RPC

ﬂ Call and continue

C“ent ------- « |, — — — — — — — — — — — — — — — —

Message
SEIVEr oo M —

Call local procedure _.
Time —

DS WS 2014 29

mn Asynchronous RPC

Recall: (A)synchronous
communication

Q1: How can asynchronous
RPC be implemented

Wait for acceptance

/4 %

Call remote
procedure

Client

Request

Server

(b)

DS WS 2014 30

Return
from call

Accept request

Call local procedure Time —»

Client

Synchronize after
processing by server

I/

Synchronize at Synchronize at
request submission request delivery

v

Request\/ /

Transmission
interrupt
V Storage /V

facility

Server

Source: Andrew S. Tanenbaum and Maarten van Steen,
Distributed Systems — Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

JISTRIBUTED 5 MS R0

mn Asynchronous RPC

Two asynchronous RPCs/ Deferred synchronous RPC

Wait for Interrupt client
acceptance
Client WHPM__ \
7 \
Call remote Feturn | o
rom ca eturn
RIaESEle results Acknowledge
Accept
RequeSt request
SBIVEl srs=srEs— s
Call local procedure \ Time —»
Call client with
one-way RPC

Source: Andrew S. Tanenbaum and Maarten van Steen,

zDésac;i});iiitiSCf_ﬁ;rl\Is—Principles and Paradigms, 2nd Edition, Q LlSt Some pOSSIb'G fallures
in RPC interactions.

DS WS 2014 31

mn Some RPC implementations
= rpcgen — SUN RPC

= |DL for interface description
» XDR for messages
= TCP/UDP for transport

= XML-RPC

= XML for messages
= HTTP for transport

= JSON-RPC

= JSON for messages
= HTTP and/or TCP/IP for transport

= Tools: Apache Thrift - http://thrift.apache.org/

DS WS 2014 32

mn Remote Meothd Invocation/Remote
Object Cali

= Remote object method invocation/call
= RPC style in object-oriented programming

RMI Registry

publish objects

. locate objects

invoke
object
methods

RMI Server

—>

DS WS 2014 33

mn Example of RPC

Add(i,j
AddClient (1)) AddServer
= add.h
program ADD PROG { = add xdr.c

version ADD VERS {
int add(int , int)=1; | ==) 3$rpcgen -N —a add.x ar add_client.c

}=1; = add_cint.c

} = 0x23452345;

= add_server.c
= add _svc.c

Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/rpcadd-ex

DS WS 2014 34

WEB SERVICES

DS WS 2014 35

mn Web services (1)

= Service: common software functionalities/capabilities
offered through well-defined interfaces and consistent
usage policies

= Socket APIs, RPC, or RMI can be used to implement
,Services”, but
= Do not work very well in the Web/Internet environment

= Do not support well the integration of different software
systems

Web Services: “aA Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.” -- http://www.w3.0org/TR/2004/NOTE-ws-arch-
20040211 /#whatis

DS WS 2014 36

mn Web services (2)

SOAP/WSDL

Applications

Web Services

Web API/REST

URIs

XML, JSON,
etc.

HTTP, SMTP,
RMI, ...

= Support interoperability

software components

Services and descriptions
Protocols/interfaces

|dentifiers, data format,
transportation

Why Web services are important in distributed systems?

Hide system complexity and implementation detail
Enable easy integration of diverse and distributed

SOAP versus REST: http://wwwconference.org/www2008/papers/pdf/p805-pautassoA.pdf

DS WS 2014

37

mn XML-based Web service
communication protocols

Web Service
Service Business
Web ServiceClient Logic

Runtime Runtime

(Proxy, Listener, etc.)
SOAP

Transport Transport
(HTTP_SMTP, ...) (HTTP, SMTP, ...)

= Through runtime, clients and services can send and receive SOAP messages -
different communication patterns

= SOAP messages (XML-based) like an envelope with a header and a body
= SOAP messages are transported using different transport protocols
= WSDL is used to describe a Web service

» Usually a Web service is hosted in an application server/container, which supports
complex messages dispatching and handling

DS WS 2014 38

mn Architectural Design - REST

» Resources are identified and accessed through URIs
= Resources are data and functionality
= A Web service manages a set of resources

= Aclient and a service exchange representations of
resources via standardized interface and protocols

= Assume one-to-one communication/client-server model

vV GET (list/retrieve) ,| Web Service
Service PUT (update/create)
Client

EJRIi: Resource,

POST (create/update)
URI,: Resource, J

DELETE (remove)

DS WS 2014 39

mn Web Services programming

* From WSDL to code, e.qg.,
= Java API for XML Web Services (JAX-WS)
» Generate Web service stubs from WSDL files
= E.g.,, wsdl2java
= Using annotations

= XML-based Web services (SOAP)
= JAX-WS annotations (JSR 181, JSR 224)
" @WebService, @WebMethod

= REST
= Java API for RESTful Web Services, JSSR-311
= @Path, @GET, @POST, ...

= Well-supported in many programming languages

DS WS 2014 40

mn Samples

JAX-WS

25 | import javax.jws.WebService;

26

27 | @ebService(endpointInterface = "demo.hw.server.Helloworld",
28 serviceName = "Hellowerld")

29 | public class HelloworldImpl implements HelloWorld {

30 Map<Integer, User> users = new LinkedHashMap<Integer, User>()
31

32

33 public String sayHi(String text) {

34 System.out.printin("sayHi called")

35 return "Hello " + text;

36 }

37

38 public String sayHiToUser{User user} {

30 System.out.println("sayHiToUser called");

40 users.put{users.size{) + 1, user);

41 return "Hello " + user.getName();

42 }

Source:

http://svn.apache.org/viewvc/cxf/trunk/distribution/sr
c/main/release/samples/java_first_jaxws/src/main/ja
va/demo/hw/server/HelloWorldimpl.java?view=mark

up

DS WS 2014

REST

BGET
@Path("/test")
@Produces (MediaType.TEXT_PLAIN)
public 5tring test(){
return "Test working”;
1
oPUT
@Path("/{id}/onDemandCantralsunhealthy™)
@Consumes ("plain/txt")
public void checkUnhealthyState(5tring servicePartID,@PathParam("id")5tring id){
controlCoordination.triggerHealthFixServicePart(servicePartID, servicePartID);

1

@puT

@Path("/processAnotation™)

@Consumes("application/xml")

public void processAnnotation(String serviceld,String entity,SYBLAnnotation annotation){
controlCoordination.processAnnotation(serviceld,entity, annotation);

1
@putT

@Path("/descriptionInternalModel™)

@Consumes ("application/xml")

public void setApplicationDescriptionInfolnternalModel(String applicationDescriptionXML, S5t
controlCoordination.setApplicationDescriptionInfoInternalModel(applicationDescript

1

Source: https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-
service-pom/rSYBL-analysis-
engine/src/main/java/at/ac/tuwien/dsg/rSybl/analysisEngine/webAPI/SybIC
ontrolWS.java

Bl Applications: Service-oriented
Architecture/Computing

Company A (or a LAN within Company A)

integrating application
(contains the composition logic)

‘ Web service—enubled brokar ‘

_ sendmail

.‘__ upphcmcn
SmartQuotation DBMS SmartForecasti
applications "

assumes all back-end JOR
systems are accessible
as Web services

Source: Web Services: Concepts,
Architecture and Applications,

G. Alonso, F. Casati, H. Kuno, V. Machiraju
Springer Verlag 2004

Chapter 5,

DS WS 2014 49

—
™
v
Web = |E
service [= | &
£
[Web | =] client
service [¥
web = |5
service [3
v
£
i s | | middleware |
l middleware | 9 W
g
sl | —
‘ internal ‘ internal ‘ 3 [internal] [internal
service service service service
Company A (provider) || Company B (client)
languages and protocols
standardized, eliminating need for
customer many dif ferent middleware
infrastructures (need only the
Web supplier Web services middleware)

internal procurgment
internal
infrastructure

interactions based on pratacols

redesigned for peer to peerand | |

B2B seftings

internal functionality made
available as a service

Web
service

internal
infrastructure

Web
service

internal
infrastructure

warehouse

mn Applications — Cloud Computing

= (Cloud resources

= Files, storage, compute machines, middleware, etc.

» Resources offered via RESTful models
= Many cloud services support REST APIs

= Examples

DS WS 2014

Compute & Networking

Amazon EC2

Auto Scaling

Elastic Load Balancing
Amazon VPC

Amazon Route 53
AWS Direct Connect

Storage & Content Delivery

Amazon 83

Amazon Glacier
Amazon EBS

AWS Import/Export
AWS Storage Gateway
Amazon CloudFront

Database

Amazon RDS
Amazon DynamoDB
Amazon ElastiCache
Amazon Redshift
Amazon SimpleDB

Analytics

Amazon EMR
Amazon Kinesis
AWS Data Pipeline

Deployment & Management

AWS Identity & Access Management
AWS CloudTrail

Amazon CloudWatch

AWS Elastic Beanstalk

AWS CloudFormation

AWS OpsWorks

AWS CloudHSM

App Services

Amazon AppSiream
Amazon CloudSearch
Amazon Elastic Transcoder
Amazon SES

Amazon SQS

Amazon SWF

Mobile Services

Amazon Cognito

Amazon Mobile Analytics
Amazon SNS

AWS Mobile SDK for Android
AWS Mobile SDK for iOS

Resources

AWS Billing and Cost Management
AWS Marketplace

Getting Started with AWS

Getting Started with AWS
Computing Basics (Linux)
Computing Basics (Windows)
Web App Hosting (Linux)
Web App Hosting (Windows)
Deploying a Web Application
Analyzing Big Data with AWS
Static Website Hosting

Tools for Amazon Web Services

AWS Management Console
AWS SDK for Java

AWS SDK for JavaScript

AWS SDK for .NET

AWS SDK for PHP

AWS SDK for Python (boto)
AWS SDK for Ruby

AWS Toolkit for Eclipse

AWS Toolkit for Visual Studio
AWS Command Line Interface
AWS Tools for Windows PowerShell

Additional Software & Services

Alexa Top Sites
Alexa Web Information Service
Amazon Mechanical Turk
Amazon Silk
DiSTRIBUTED SYSTEMS (GROUT

STREAMING DATA
PROGRAMMING

DS WS 2014 44

mn Data stream programming

Data stream: a sequence of data units

e.g. reading bytes from a file and send bytes via a TCP
socket

= Data streams can be used for

= Continuous media (e.g., video)
= Discrete media (e.g., stock market events/twitter
events)

DS WS 2014 45

mn Timing issues

client server
Streaming
data m3 m2 m1 m3 | <------->| m2 m1
¥ ¥

t time ”
When the

o _ H End-to-end delay transmission
= Timing issues of M2

> Asynchronous transmission mode completes
= no constraints on when the transmission completes

» Synchronous transmission mode:
= maximum end-to-end delay defined for each data unit

» Isochronous transmission
» maximum and minimum end-to-end delay defined

DS WS 2014 46

mn Multiple streams

clients server
Streaming
m3 m2 m1
Streaming i =8 &1
data s s3 s2 S1

Complex stream/multiple streams data processing

Tools |Esper | Storm | |S4 Gigaspaces XAP @ | Streambase

DS WS 2014 47

BBl Example: Complex event
processing with Esper

Streaming event data q‘f ResultHandler

public class InteractionEvent {
public final static String REQUEST = "Request";

public final static String RESPONSE = "Response";
private String clientEndpoint=null;
private String activityURI=null;

public class NumberCallHandler extends
BaseResultHandler {

private String serviceEndpoint=null; EPL (Eve nt @Override
. public void update(Map[] insertStream,
private String messageCorrelation|D=null; Processi ng Map[] removeSteam) {
m....
private String messageType=null; La n g u ag e) }

... }

select clientEndpoint, serviceEndpoint
from InteractionEvent.win:length(100)
where messageType="Request"

DS WS 2014 48

http://esper.codehaus.org/esper

GROUP COMMUNICATION

DS WS 2014 49

mn Group communication

Group communication use multicast messages
= E.g., IP multicast or application-level multicast

Atomic Multicast: Messages are received either by every
member or by none of them

Reliable multicast: messages are delivered to all members
in the best effort — but not guaranteed.

DS WS 2014 50

mn Atomic Multicast

Q1: Give an example of atomic multicast

Example of implementing multicast using one-to-one communication

Sender’s program

Receiver’s program

1:=0; if misnew —
do i#n— accept it;
send message to memberfi]; multicast m;
.= 1+1 [] mis duplicate — discard m

od fi

Source: Sukumar Ghosh, Distributed Systems: An Algorithmic Approach,Chapman and Hall/CRC, 2007

Q2: How do we know “m is new”?

DS WS 2014 91

Sl Application-level Multicast
Communication (1)

= Application processes are organized into an
overlay network, typically in a mesh or a tree

A Multicast data path
G
=)
New Member
& |

New mesh link to
New Mesh Links Drop non-useful link

repai-rf}m partition
A @4

P

Failed Members
°‘ X

Source: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

DS WS 2014 52

Sl Application-level Multicast
Communication (2)

in a few
more steps

New member

Sources: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

DS WS 2014 53

DisTRIBUTED SvsTeMs Grour *

Gossip-based Data Dissemination

(1)

Why gOSS|p? Eg, https://www.youtube.com/watch?v=0OPYhk_NbEtA#t=22
It can spread messages fast and reliably

Active thread (peer P): Passive thread (peer (Q):

(1) selectPeer(&Q); (1)

(2) selectToSend(&bufs); (2)

(3) sendTo(Q, bufs); —-——- > (3) receiveFromAny (&P, &bufr);
(4) (d) selectToSend(&bufs);

(5) receiveFrom(Q, &bufr); == (5) sendTo(P, bufs);

(6) selectToKeep(cache, bufr); (6) selectToKeep(cache, bufr);
(7T) processData(cache); (7) processData(cache)

Source: Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41, 5 (October 2007),
2-7. DOI=10.1145/1317379.1317381 http://doi.acm.org/10.1145/1317379.1317381

DS WS 2014 54

ISl Gossip-based Data Dissemination
(2)

* Give a system of N nodes and there is the need
to send some data items

» Every node has been updated for data item x

= Keep x in a buffer whose maximum capability is b
= Determine a number of times t that the data item x
should be forwarded

= Randomly contact f other nodes (the fant-out) and
forward x to these nodes

Different configurations of (b,t,f) create different algorithms

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent Massoulieacute;, "Epidemic Information Dissemination in Distributed
Systems," Computer, vol. 37, no. 5, pp. 60-67, May 2004, doi:10.1109/MC.2004.1297243

DS WS 2014 55

mn Summary

= Various techniques for programming
communication in distributed systems

Transport versus application level programming
Transient versus persistent communication
Procedure call versus messages

Web Services

Streaming data

Multicast and gossip-based data dissemination

= Dont forget to play with some simple examples
to understand existing concepts

DS WS 2014 56

T
Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group
Vienna University of Technology
truong@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/staff/truong

DS WS 2014 57

