
Communication in Distributed Systems –

Programming

Hong-Linh Truong

Distributed Systems Group,

Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

1DS WS 2014

Distributed Systems, WS 2014Distributed Systems, WS 2014

What is this lecture about?

 Examine and study main frameworks, libraries

and techniques for programming

communication in distributed systems

 Understand pros and cons of different

techniques for different layers and purposes

 Be able to select the right solutions for the right

systems

 Be able to combine different techniques for a

complex problem

DS WS 2014 2

Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems: Principles and

Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapters 3 & 4

 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon

Blair„Distributed Systems – Concepts and Design“, 5nd Edition

 Chapters 4,5,6 and 9

 Sukumar Ghosh, “Distributed Systems: An Algorithmic

Approach”, Chapman and Hall/CRC, 2007

 Chapter 15

 Papers referred in the lecture

 Test the examples in the lecture

DS WS 2014 3

Outline

 Recall

 Message-oriented Transient Communication

 Message-oriented Persistent Communication

 Remote Invocation

 Web Services

 Streaming data programming

 Group communication

 Gossip-based Data Dissemination

 Summary

DS WS 2014 4

Recall

 One-to-one versus group communication

 Transient communication versus persistent

communication

 Message transmission versus procedure call versus

object method calls

 Physical versus overlay network

DS WS 2014 5

MESSAGE-ORIENTED

TRANSIENT COMMUNICATION

DS WS 2014 6

Message-oriented Transient

Communication at Transport Layer

 Socket interface – Socket APIs

 Very popular, supported in almost all programming

languages and operating systems

 Berkeley Sockets (BSD Sockets)

 Java Socket, Windows Sockets API/WinSock, etc.

 Designed for low-level system, high-performance,

resource-constrained communication
DS WS 2014 7

Transport-level socket programming via socket

interface

Transport-level socket programming via socket

interface

 How does an application use the transport layer

communication to send/receive messages?

Message-oriented Transient

Communication at Transport Level (2)

 Client

 Connect, send and then receive data through sockets

 Server:

 Bind, listen/accept, receive incoming data, process

the data, and send the result back to the client

DS WS 2014 8

What is a socket: a communication end point to/from

which an application can send/receive data through the

underlying network.

Q: Which types of information are used to describe the

identifier of the “end point”?

Q: Which types of information are used to describe the

identifier of the “end point”?

Socket Primitives

DS WS 2014 9

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Client-server interaction

DS WS 2014 10

Q: How can a multi-threaded server be implemented?Q: How can a multi-threaded server be implemented?

Connection-oriented communication interaction

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Example

 Simple echo service

 Client sends a message to a server

 Server returns the message

 Source code:

https://github.com/tuwiendsg/distributedsystems

examples/tree/master/SimpleEchoSocket

DS WS 2014 11

Q: What if connect() happens before listen()/accept()?Q: What if connect() happens before listen()/accept()?

https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/SimpleEchoSocket

Complex communication, large-scale number processes in the

same application

Complex communication, large-scale number processes in the

same application

Message-oriented Transient

Communication at the Application

level

Why are transport level socket programming

primitives not good enough?

Why are transport level socket programming

primitives not good enough?

DS WS 2014 12

Message-passing Interface (MPI)

 Designed for parallel processing: http://www.mpi-forum.org/

 Well supported in clusters and high performance computing

systems

 One-to-one/group and synchronous/asynchronous communication

DS WS 2014 13

 Basic MPI concepts

 Communicators/groups to determine a set of processes that

can be communicated: MPI_COMM_WORLD represents all mpi

processes

 Rank: a unique identifier of a process

 A set of functions to manage the execution environment

 Point-to-point communication functions

 Collective communication functions

 Functions handling data types

 Basic MPI concepts

 Communicators/groups to determine a set of processes that

can be communicated: MPI_COMM_WORLD represents all mpi

processes

 Rank: a unique identifier of a process

 A set of functions to manage the execution environment

 Point-to-point communication functions

 Collective communication functions

 Functions handling data types

Message-passing Interface (MPI)

DS WS 2014 14

Function Description

MPI_Init Initialize the MPI execution environment

MPI_Comm_size Determine the size of the group given a communicator

MPI_Comm_rank Determine the rank of the calling process in group

MPI_Send() Send a message, blocking mode

MPI_Recv() Receive a message, blocking mode

…

MPI_Bcast() Broadcast a message from a process to others

MPI_Reduce() Reduce all values from all processes to a single value

…

MPI_Finalize() Terminate the MPI execution environment

Example

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0) {

printf("I am %d: We have %d processors\n", myid,

numprocs);

sprintf(output, "This is a message sending from %d",

i);

for(i=1;i<numprocs;i++)

MPI_Send(output, 80, MPI_CHAR, i, 0,

MPI_COMM_WORLD);

}

else {

MPI_Recv(output, 80, MPI_CHAR, i, 0,

MPI_COMM_WORLD, &status);

printf("I am %d and I receive: %s\n", myid, output);

}

source=0;

count=4;

if(myid == source){

for(i=0;i<count;i++)

buffer[i]=i;

}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COM

M_WORLD);

for(i=0;i<count;i++) {

printf("I am %d and I receive: %d \n",myid, buffer[i]);

}

printf("\n");

MPI_Finalize();

DS WS 2014 15

Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/mpi-ex

MESSAGE-ORIENTED

PERSISTENT

COMMUNICATION
DS WS 2014 16

Message-oriented Persistent

Communication – Queuing Model

 Message-queuing systems or Message-

Oriented Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent but asynchronous messages

 Scalable message handling

 Different communication patterns

 Several Implementations

DS WS 2014 17

Message-oriented Persistent

Communication – Queuing Model

Communication models with time (un)coupling

DS WS 2014 18

Operations

PUT

GET

POLL

NOTIFY

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Q1: Give an example

of case (d)

Q1: Give an example

of case (d)

Message-oriented Persistent

Communication – Queuing Model

DS WS 2014 19

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Practical work: JMS - http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html Practical work: JMS - http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

Message Brokers

DS WS 2014 20
Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles

and Paradigms, 2nd Edition, 2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles

and Paradigms, 2nd Edition, 2007, Prentice-Hall

 Publish/Subscribe: messages are matched to applications

 Transform: messages are transformed from one format to

another one suitable for specific applications

Example – Advanced Message

Queuing Protocol (AMQP)

 http://www.amqp.org

DS WS 2014 21

Apache Qpid™Apache Qpid™

Content-Based Message Routing:

AMQP

22

Figs source: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guid

e/chap-Messaging_User_Guide-Exchanges.html

Figs source: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guid

e/chap-Messaging_User_Guide-Exchanges.html

Note: defined in AMQP 0-10

But not in AMQP 1.0

DS WS 2014

Example: AMQP

ConnectionFactory factory = new ConnectionFactory();

factory.setUri(uri);

Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {

String message = "Hello distributed systems guys: "+i;

channel.basicPublish("", QUEUE_NAME, null,

message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

new Thread().sleep(5000);

}

channel.close();

connection.close();

ConnectionFactory factory = new ConnectionFactory();

factory.setUri(uri);

Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE_NAME, false, false,

false, null);

System.out.println(" [*] Waiting for messages");

QueueingConsumer consumer = new

QueueingConsumer(channel);

channel.basicConsume(QUEUE_NAME, true,

consumer);

while (true) {

QueueingConsumer.Delivery delivery =

consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.println(" [x] Received '" + message + "'");

}

DS WS 2014 23

Source code:

https://github.com/cloudamqp/java-

amqp-example, see also the demo in

the lecture 2

REMOTE INVOCATION

DS WS 2014 24

Remote Procedure Call

How can we call a procedure in a remote process

in a similar way to a local procedure?

DS WS 2014 25

Remote Procedure Call (RPC): hides all complexity in

calling remote procedures

 Well support in

many systems

and programming

languages

Q1: Which types of

applications are suitable for

RPC?

Q1: Which types of

applications are suitable for

RPC?Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Message format and data structure

description

DS WS 2014 26

 Passing parameters and results needs agreed message

format between a client and a server

 Data types may have different representations due to

different machine types (e.., SPARC versus Intel x86)

Marshaling/unmarshalling describes the process

packing/unpacking parameters into/from messages
(note: encoding/decoding are also the terms used)

Interface languages can be used to describe the

common interfaces between clients and server

Generating stubs

DS WS 2014 27

Interface

description

Interface

description

Message

Format

Message

Format

Generating
Stubs: Code for

marshalling/unmarshalling

Stubs: Code for

marshalling/unmarshalling

Transport informationTransport information e.g., HTTP, TCP, UDP

e.g., IDL, XML

e.g., XDR, XML

Detailed Interactions

DS WS 2014 28

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

One-way RPC

DS WS 2014 29

Time
Call local procedure

Server

Client

Message

Call and continue

Asynchronous RPC

DS WS 2014 30

Recall: (A)synchronous

communication

Q1: How can asynchronous

RPC be implemented

Recall: (A)synchronous

communication

Q1: How can asynchronous

RPC be implemented

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Asynchronous RPC

DS WS 2014 31

Two asynchronous RPCs/ Deferred synchronous RPC

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall
Q: List some possible failures

in RPC interactions.

Q: List some possible failures

in RPC interactions.

Some RPC implementations

 rpcgen – SUN RPC

 IDL for interface description

 XDR for messages

 TCP/UDP for transport

 XML-RPC

 XML for messages

 HTTP for transport

 JSON-RPC

 JSON for messages

 HTTP and/or TCP/IP for transport

 Tools: Apache Thrift - http://thrift.apache.org/

DS WS 2014 32

Remote Meothd Invocation/Remote

Object Call

 Remote object method invocation/call

 RPC style in object-oriented programming

DS WS 2014 33

RMI ClientRMI Client

RMI Registry

RMI ServerRMI Server

locate objects

invoke

object

methods

publish objects

obj

obj

obj

obj

Example of RPC

DS WS 2014 34

AddClient
Add(i,j) AddServer

$rpcgen –N –a add.x

program ADD_PROG {

version ADD_VERS {

int add(int , int) = 1;

} = 1;

} = 0x23452345;

 add.h

 add_xdr.c

 add_client.c

 add_clnt.c

 add_server.c

 add_svc.c

 add.h

 add_xdr.c

 add_client.c

 add_clnt.c

 add_server.c

 add_svc.c

Code: https://github.com/tuwiendsg/distributedsystemsexamples/tree/master/rpcadd-ex

WEB SERVICES

DS WS 2014 35

Web services (1)

 Service: common software functionalities/capabilities

offered through well-defined interfaces and consistent

usage policies

 Socket APIs, RPC, or RMI can be used to implement

„services“, but

 Do not work very well in the Web/Internet environment

 Do not support well the integration of different software

systems

DS WS 2014 36

Web Services: “A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP-

messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.” -- http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/#whatis

Web Services: “A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP-

messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.” -- http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/#whatis

Web services (2)

DS WS 2014 37

Applications

Applications

Web Services

SOAP/WSDL Web API/REST

HTTP, SMTP,

RMI, …

XML, JSON,

etc.

URIs Identifiers, data format,

transportation

Protocols/interfaces

Services and descriptions

SOAP versus REST: http://wwwconference.org/www2008/papers/pdf/p805-pautassoA.pdfSOAP versus REST: http://wwwconference.org/www2008/papers/pdf/p805-pautassoA.pdf

 Why Web services are important in distributed systems?

 Support interoperability

 Hide system complexity and implementation detail

 Enable easy integration of diverse and distributed

software components

 Why Web services are important in distributed systems?

 Support interoperability

 Hide system complexity and implementation detail

 Enable easy integration of diverse and distributed

software components

Web Service

XML-based Web service

communication protocols

 Through runtime, clients and services can send and receive SOAP messages 

different communication patterns

 SOAP messages (XML-based) like an envelope with a header and a body

 SOAP messages are transported using different transport protocols

 WSDL is used to describe a Web service

 Usually a Web service is hosted in an application server/container, which supports

complex messages dispatching and handling

DS WS 2014 38

SOAP

Web ServiceClient

Runtime
(Proxy, Listener, etc.)

H
Transport

(HTTP, SMTP, …)

Transport
(HTTP, SMTP, …)

SOAP

Service Business

Logic

Runtime

Architectural Design - REST

 Resources are identified and accessed through URIs

 Resources are data and functionality

 A Web service manages a set of resources

 A client and a service exchange representations of

resources via standardized interface and protocols

 Assume one-to-one communication/client-server model

DS WS 2014 39

GET (list/retrieve)

PUT (update/create)

POST (create/update)

DELETE (remove)

Web Service

URIi: Resourcei

Web

Service

Client

URIk: Resourcek

Web Services programming

 From WSDL to code, e.g.,

 Java API for XML Web Services (JAX-WS)

 Generate Web service stubs from WSDL files

 E.g., wsdl2java

 Using annotations

 XML-based Web services (SOAP)

 JAX-WS annotations (JSR 181, JSR 224)

 @WebService, @WebMethod

 REST

 Java API for RESTful Web Services, JSR-311

 @Path, @GET, @POST, …

 Well-supported in many programming languages

DS WS 2014 40

Samples

DS WS 2014 41

Source: https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-

service-pom/rSYBL-analysis-

engine/src/main/java/at/ac/tuwien/dsg/rSybl/analysisEngine/webAPI/SyblC

ontrolWS.java

Source:

http://svn.apache.org/viewvc/cxf/trunk/distribution/sr

c/main/release/samples/java_first_jaxws/src/main/ja

va/demo/hw/server/HelloWorldImpl.java?view=mark

up

JAX-WS REST

Applications: Service-oriented

Architecture/Computing

DS WS 2014 42

Source: Web Services: Concepts,

Architecture and Applications,

G. Alonso, F. Casati, H. Kuno, V. Machiraju

Springer Verlag 2004

Chapter 5,

Applications – Cloud Computing

 Cloud resources

 Files, storage, compute machines, middleware, etc.

 Resources offered via RESTful models

 Many cloud services support REST APIs

 Examples

DS WS 2014 43

STREAMING DATA

PROGRAMMING

DS WS 2014 44

Data stream programming

 Data streams can be used for

 Continuous media (e.g., video)

 Discrete media (e.g., stock market events/twitter

events)

DS WS 2014 45

Data stream: a sequence of data units

e.g. reading bytes from a file and send bytes via a TCP

socket

Timing issues

 Timing issues

 Asynchronous transmission mode

 no constraints on when the transmission completes

 Synchronous transmission mode:

 maximum end-to-end delay defined for each data unit

 Isochronous transmission

 maximum and minimum end-to-end delay defined

DS WS 2014 46

m3 m2 m1 m3 m2 m1

time

client

Streaming

data

server

When the

transmission

of m2

completes

End-to-end delay

Multiple streams

Complex stream/multiple streams data processing

DS WS 2014 47

clients

Streaming

data m

server

m3 m2 m1

… … …

s3 s2 s1
Streaming

data s

m1m1

……

s1s1

m2m2

……

s2s2

m3m3

……

s3s3

EsperEsper StormStorm S4S4 Gigaspaces XAPGigaspaces XAP StreambaseStreambaseTools

Example: Complex event

processing with Esper

http://esper.codehaus.org/esper.

DS WS 2014 48

Esper Runtime

Engine

Esper Runtime

Engine

select clientEndpoint, serviceEndpoint

from InteractionEvent.win:length(100)

where messageType="Request"

select clientEndpoint, serviceEndpoint

from InteractionEvent.win:length(100)

where messageType="Request"

ResultHandler

public class NumberCallHandler extends

BaseResultHandler {

@Override

public void update(Map[] insertStream,

Map[] removeSteam) {

///….

}

}

Streaming event data

public class InteractionEvent {

public final static String REQUEST = "Request";

public final static String RESPONSE = "Response";

private String clientEndpoint=null;

private String activityURI=null;

private String serviceEndpoint=null;

private String messageCorrelationID=null;

private String messageType=null;

///….

}

EPL (Event

Processing

Language)

http://esper.codehaus.org/esper

GROUP COMMUNICATION

DS WS 2014 49

Group communication

DS WS 2014 50

Atomic Multicast: Messages are received either by every

member or by none of them

Reliable multicast: messages are delivered to all members

in the best effort – but not guaranteed.

 Group communication use multicast messages

 E.g., IP multicast or application-level multicast

Atomic Multicast

Q1: Give an example of atomic multicastQ1: Give an example of atomic multicast

DS WS 2014 51

Sender’s program Receiver’s program

i:=0; if m is new

do i ≠ n accept it;

send message to member[i]; multicast m;

i:= i+1 [] m is duplicate discard m

od fi

Source: Sukumar Ghosh, Distributed Systems: An Algorithmic Approach,Chapman and Hall/CRC, 2007Source: Sukumar Ghosh, Distributed Systems: An Algorithmic Approach,Chapman and Hall/CRC, 2007

Q2: How do we know “m is new”?Q2: How do we know “m is new”?

Example of implementing multicast using one-to-one communication

Application-level Multicast

Communication (1)

 Application processes are organized into an

overlay network, typically in a mesh or a tree

DS WS 2014 52

Source: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Source: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Multicast data path

Application-level Multicast

Communication (2)

DS WS 2014 53

Sources: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Sources: Suman Banerjee , Bobby Bhattacharjee , A Comparative Study of Application Layer Multicast Protocols (2001) ,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2832

Gossip-based Data Dissemination

(1)

Why gossip? E.g., https://www.youtube.com/watch?v=OPYhk_NbEtA#t=22

It can spread messages fast and reliably

DS WS 2014 54

Source: Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41, 5 (October 2007),

2-7. DOI=10.1145/1317379.1317381 http://doi.acm.org/10.1145/1317379.1317381

Source: Anne-Marie Kermarrec and Maarten van Steen. 2007. Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41, 5 (October 2007),

2-7. DOI=10.1145/1317379.1317381 http://doi.acm.org/10.1145/1317379.1317381

Gossip-based Data Dissemination

(2)

 Give a system of N nodes and there is the need

to send some data items

 Every node has been updated for data item x

 Keep x in a buffer whose maximum capability is b

 Determine a number of times t that the data item x

should be forwarded

 Randomly contact f other nodes (the fant-out) and

forward x to these nodes

DS WS 2014 55

Different configurations of (b,t,f) create different algorithms

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent Massoulieacute;, "Epidemic Information Dissemination in Distributed

Systems," Computer, vol. 37, no. 5, pp. 60-67, May 2004, doi:10.1109/MC.2004.1297243

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent Massoulieacute;, "Epidemic Information Dissemination in Distributed

Systems," Computer, vol. 37, no. 5, pp. 60-67, May 2004, doi:10.1109/MC.2004.1297243

Summary

 Various techniques for programming

communication in distributed systems

 Transport versus application level programming

 Transient versus persistent communication

 Procedure call versus messages

 Web Services

 Streaming data

 Multicast and gossip-based data dissemination

 Dont forget to play with some simple examples

to understand existing concepts

DS WS 2014 56

57

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

DS WS 2014

