
Performance, Dependability, and Fault

Tolerance in Distributed Systems

Hong-Linh Truong

Distributed Systems Group,

Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

1DS WS 2014

Distributed Systems, WS 2014Distributed Systems, WS 2014

What is this lecture about?

 Service performance and service failures

 Basic performance metrics

 Dependability attributes, threats and means

 Basic mechanisms/algorithms of fault tolerance

computing

 Performance and dependability of systems

learned in other lectures

DS WS 2014 2

Learning Materials

 Main reading:
 John Knight, Fundamentals of Dependable Computing for

Software Engineers, CRC Press, 2012

 Chapters 1-3

 Tanenbaum & Van Steen, Distributed Systems: Principles and

Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapter 8

 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon

Blair„Distributed Systems – Concepts and Design“, 5nd Edition

 Chapter 15

 Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl

Landwehr. 2004. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Trans. Dependable

Secur. Comput. 1, 1 (January 2004), 11-33

DS WS 2014 3

Outline

 Service performance and failures

 Performance

 Dependability

 Techniques for dealing faults

 Homework

 Summary

DS WS 2014 4

SERVICE/SYSTEM FAILURES

AND QUALITY

DS WS 2014 5

System function, behavior,

structure and service

 Fundamental properties of a system

 Functionality

 Performance, dependability, security, cost

 Called non-functional properties

 Usability, manageability, adaptability/elasticity

 Structure of a system

 A set of composite and atomic components

 A composite component is composed of a set of

components

 A (distributed) system delivers one or many services

DS WS 2014 6

Client requirements/expectations

 What would you expect when you send a picture

to your friend?

 What would you expect when you search

Google?

DS WS 2014 7

Clients require correct service w.r.t function and

non-functional properties

Non-functional properties about performance,

dependability, security and cost can be very subjective

Non-functional properties about performance,

dependability, security and cost can be very subjective

Requirement/expectation from

service providers

 Offer the correct functionality

 Avoid service failures, e.g.,

 To avoid unexpected crashes

 To able to detect and recover failures

 Improve quality of services, e.g.,

 Reduce response time and cost, maximize service

utilization

 Support „conformity“ and „specific“ requirements

DS WS 2014 8

To provide correct and enhanced service w.r.t

function and non-functional properties

Function versus non-functional failures

Function

Correct service:

 Deliver the intended function

described in the service

specification

Service failure

 The delivered function deviates

from the specified/intended one

Non-functional properties

Correct service

 Deliver the intended function

within the specified non-

functional properties

Service failure

 Non functional properties do

not meet the specified ones

DS WS 2014 9

 But failures are inevitable in distributed systems!

 Performance is varying in distributed systems!

System behavior

DS WS 2014 10

Normal
Over-

performance
Under-

performance
Failure Normal

Fault

Error

Few requests

Underload

Normal: based on the service specification and design

Example of

service

behavior

Time

Too many
requests

Overload

Failure classification

DS WS 2014 11

Type of
failures

Crash
failures

Omission
failures

Timing
failures

Response
failures

Arbitrary/
Byzantine

failures

Quality of service improvement

DS WS 2014 12

Quality

Time
Behaviors

Response
time

Latency Throughput

Utilization Efficiency
Quality
of data

Accuracy Completeness

Understand the complexity in

dealing with service failures/quality

DS WS 2014 13

intranet

ISP

desktop computer:

backbone

satellite link

server:

%

network link:

%

%

%

Communication NetworksCommunication Networks

OS ProcessesOS Processes

Middleware 1
Processes

Middleware 1
Processes

Application 1
Processes

Application 1
Processes

Application 2
processes

Application 2
processes

Middleware2
Processes

Middleware2
Processes

Middleware3
Processes

Middleware3
Processes

Application n
Processes

Application n
Processes

OS ProcessesOS Processes

Middleware 1
Processes

Middleware 1
Processes

Application 1
Processes

Application 1
Processes

Application 2
processes

Application 2
processes

Middleware 2
Processes

Middleware 2
Processes

Application
Processes
Application
Processes

Hardware (CPU, Memory,
Network)

Operating Systems

Middleware/Libaries/Runtime
systems

Applications

Layers

Scale

Structure

Source: Coulouris, Dollimore, Kindberg and Blair,

Distributed Systems: Concepts and Design Edn. 5

Source: Coulouris, Dollimore, Kindberg and Blair,

Distributed Systems: Concepts and Design Edn. 5

Dealing with service failures and

quality

 Determines clearly system boundaries

 The system under study, the system used to judge,

and the environment

 Understands dependencies, e.g.

 Among components in distributed systems

 Single layer as well as cross-layered dependencies

 Determines types of metrics and failures and

break down problems along the dependency

path

DS WS 2014 14

PERFORMANCE

DS WS 2014 15

Performance metrics
 Timing behaviors

 Communication

 Latency/Transfer time

 Data transfer rate, bandwidth

 Processing

 Response time

 Throughput

 Utilization

 Network utilization

 CPU utilization

 Service utilization

 Efficiency

 Data quality

DS WS 2014 16

Client Server

msg

msg

latency

Processing

time

Response

time

Sending

time

Receiving

time

Examples

Measurement, Monitoring and

Analysis
 Instrumentation and Sampling

 Instrumentation: insert probes into systems so that you

can measure system behaviors directly

 Sampling: use components to take samples of system

behaviors

 Monitoring

 Probes or components perform sampling or

measurements, storing and sharing measurments

 Analysis

 Evaluate and interpret measurements for specific

contexts

 Can be subjective!

DS WS 2014 17

Composable methods and views

 Composable method

 Divide a complex structure

into basic common

structures

 Each basic structure has

different ways to analyze

specific failures/metrics

 Interpretation based on

context/view

 Client view or service

provider view?

 Conformity versus specific

requirement assessment

DS WS 2014 18

Dependency Structure

Client: Server is

failed Provider: OK

Failure

Slow

Examples

 Which

performance

metrics can be

measured?

 How can you

measure these

metrics?

DS WS 2014 19

Web Service

SOA

P

Web ServiceClient

Runtime

(Proxy, Listener,

etc.)

H

Transport

(HTTP, SMTP, …)

Transport

(HTTP, SMTP, …)

SOA

P

Service Business

Logic

Runtime

DEPENDABILITY

DS WS 2014 20

Dependability

 Important characteristics

 About avoiding service failures

 Subjective

 Defined in a specific context

 Defined as an average

DS WS 2014 21

„The dependability of a system is the ability to avoid

service failures that are more frequent and more

severe than is acceptable“

Source: John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press,

2012

Source: John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press,

2012

Performability

 What happens if the performance is

unacceptable, e.g., the service cannot be

scaled, the service is unreliable

 Technically, the system may still deliver its

function

 it may fail to deliver the expected non-functional

properties as well as its function may fail eventually

 Performability measures a system performance

and its dependability

 Performance is currently not an attribute of

dependability

DS WS 2014 22

Dependability Attributes, Threats

and Means

DS WS 2014 23

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

See lecture 9

Personal note: Performance should be an attribute as well!Personal note: Performance should be an attribute as well!

Sub mechanisms of

resilience techniques

Sub mechanisms of

resilience techniques

Dependability attributes (1)

DS WS 2014 24

Availability: „probability that the system will operational at

time t“ readiness at a given time

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

 It would be more easy to understand availability

by looking at „downtime“. One simple way is

Availability Downtime (in a year)

90% (1-nine) 36.5 days

99% (2-nines) 3.65 days

99.99 %(4-nines) 52 minutes, 33.6 seconds

99.999% (5-nines) 5 minutes, 15.5 seconds

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

Dependability attributes (2)

 Some simple rules

DS WS 2014 25

Reliability: „probability that the system will operate

correctly in a specified operating environment up until

time t“ continuity without failures

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑖=1

𝑛

𝑅𝑖

𝑅𝑖 is the probability of successful operations

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −

𝑖=1

𝑛

𝑄𝑖

𝑄𝑖 is the probability of failure operations

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

See http://www.csun.edu/~bjc20362/Billinton-Allan-Excerpt.pdf

Dependability attributes (3)

 Loss: money, life, etc.

DS WS 2014 26

Safety: „expected loss per unit time is less than a

prescribed threshold“ absence of catastrophic

consequences

Risk: „expected loss per unit time that will be experienced

by using a system“

𝑟𝑖𝑠𝑘 =
𝑖
pr 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖 x loss 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖

Source: John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press,

2012

Source: John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press,

2012

Dependability attributes (4)

DS WS 2014 27

Confidentiality: „the absence of unauthorized

disclosure of information“

Integrity: „the absence of improper system

alterations“

Note: See lecture 9

Maintainability: „the ability to undergo repairs and

modifications“

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

John Knight, Fundamentals of Dependable Computing for Software Engineers, CRC Press, 2012

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (January 2004), 11-33.

Threats to Dependability

 Error: Deviation of the actual system state from the

correct service state

 Fault: the (actual or hypothesize) cause of an error

 Failure: an event when the delivered service deviates

from correct service

 Not comply with the functional specification

 Often also not comply with the non-functional specification

DS WS 2013 28

Fault Error Failure

Types of faults (1)

DS WS 2014 29

Time

Layers

hardware

network

OS

Structure

atomic component

composite components

Algirdas Avizienis, Jean-Claude Laprie, Brian

Randell, and Carl Landwehr. 2004. Basic Concepts

and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur.

Comput. 1, 1 (January 2004), 11-33

Types of faults (2)

DS WS 2014 30

Types of faults

Degradation Design Byzantine

State

Active
fault

Dormant
fault

Permanent
fault

Transient
fault

Examples of Failures, Errors, Faults

DS WS 2014 31

“ …. On Sunday, we saw a large number of servers that were spending almost all of their time gossiping

and a disproportionate amount of servers that had failed while gossiping. With a large number of servers

gossiping and failing while gossiping, Amazon S3 wasn't able to successfully process many customer

requests.

…..

At 10:32am PDT, after exploring several options, we determined that we needed to shut down all

communication between Amazon S3 servers, shut down all components used for request processing, clear

the system's state, and

We've now determined that message corruption was the cause of the server-to-server communication

problems. More specifically, we found that there were a handful of messages on Sunday morning that had

a single bit corrupted such that the message was still intelligible, but the system state information was

incorrect. We use MD5 checksums throughout the system, for example, to prevent, detect, and recover

from corruption that can occur during receipt, storage, and retrieval of customers' objects. However, we

didn't have the same protection in place to detect whether this particular internal state information had

been corrupted. As a result, when the corruption occurred, we didn't detect it and it spread throughout the

system causing the symptoms described above. We hadn't encountered server-to-server communication

issues of this scale before and, as a result, it took some time during the event to diagnose and recover

from it.”

Source: http://status.aws.amazon.com/s3-20080720.htm

FailuresFailures

ErrrorErrror

FaultFault

Failure models

DS WS 2014 32

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Means/Mechanisms for

Dependability

DS WS 2014 33

Avoidance/PreventionAvoidance/Prevention

Elimination/RemovalElimination/Removal

ToleranceTolerance

ForecastingForecasting

DEALING WITH FAULTS

DS WS 2014 34

Dealing with faults

 Resilience and Elasticity able to go back/to

stretch

 Redundancy and Replication

 Fault-tolerance

 including checkpointing and recovery

 Elasticity (Elastic Computing)

 Mainly for quality perspectives

 Feedback Control (e.g., in Autonomic

Computing)

DS WS 2014 35

Redundancy

 Information Redundancy: additional information is

provided.

 Time Redundancy: actions are performed again

 Physical Redundancy: extra hardware or software

components are used to tolerate the failures of some

hardware/components

DS WS 2014 36

Example of Triple

Modular

Redundancy

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Group redundancy architecture
 Use group architecture for redundancy in order

to support failure masking

DS WS 2014 37

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

CLient Server

CLient

Group of processes

single

component

Design Flat Groups versus

Hierarchical Groups

DS WS 2014 38

Structure a system (communication, servers, services, etc.)

using a group so we can deal failures using collective

capabilities

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Replication architecture

DS WS 2014 39

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

FE CFEC RM

RM

RM

Passive (Primary

backup) model

Active Replication

See lectures 7-8

Example: Cassandra -
http://www.datastax.com/docs/1.0/cluster_architecture/replication

Source: Coulouris, Dollimore,

Kindberg and Blair, Distributed

Systems: Concepts and Design

Edn. 5

Source: Coulouris, Dollimore,

Kindberg and Blair, Distributed

Systems: Concepts and Design

Edn. 5

http://www.datastax.com/docs/1.0/cluster_architecture/replication

Fault-tolerance computing

Main steps:

DS WS 2014 40

Fault tolerance means to avoid service failures

in the presence of faults

Error DetectionError Detection
Damage

Assessment
Damage

Assessment
State

Restoration
State

Restoration
Continued

Service
Continued

Service

Failure detection

 Monitoring and analysis

 Performance monitoring and analysis tools

 Pinging, Gossip

 Process + network monitoring

 Testing

 Fault injection

 Evaluation

 Message analysis, Data quality check, Auditing

DS WS 2014 41

Fault-tolerance in

arbitrary/Byzantine failures

 How do we deal with fault

systems where faults are

arbitrary (Byzantine

faults)?

 Faults can be omission or
commission

 The result is unpredictable

DS WS 2014 42

1

P 2

P3 (crashes)

P1

Consensus algorithm

v1 =proceed

v3=abort

v2=proceed

d1 :=proceed d2 :=proceed

Source: Coulouris, Dollimore, Kindberg and Blair,

Distributed Systems: Concepts and Design Edn. 5

Source: Coulouris, Dollimore, Kindberg and Blair,

Distributed Systems: Concepts and Design Edn. 5

Fault tolerance in

arbitrary/Byzantine failures

 Byzantine fault-tolerance algorithms are based

on agreements among processes

 A system consists of correct processes and faulty

processes and we want to achieve correct service

with faults in k processes

 If an agreement is reached, even in the presence of

faults we could achieve byzantine fault-tolerance

 Strongly related to consensus problems in distributed

systems

DS WS 2014 43

Byzantine fault tolerance

algorithms

 Traditional approaches, e.g.

 Direct/unicast synchronization communication: work

if the number of faulty processes is less than one-

third of the total number of processes: n ≥ 3k + 1

 Low performance

 Practical Byzantine Fault Tolerance

 High performance Byzantine fault tolerance using

replication

 http://www.pmg.lcs.mit.edu/bft/

 New protocols: HQ, UpRight, RBFT, BFT-SMaRt,

(Archistar) http://archistar.at/, etc.

DS WS 2014 44

http://www.pmg.lcs.mit.edu/bft/
http://archistar.at/

Fault tolerance in arbitrary/Byzantine

failures in synchronization

communication

 Synchronous communication

 Point-to-point (Unicast) communication

 Message delivery is ordered

 Delay is bounded

 As long as correct processes agree, the system

can move on (ignore the faulty processes)

DS WS 2014 45

Example of Byzantine with k fault, n

=4
Step 1:

 Each process sends messages to all

others

Step 2:

 Each process determines a vector of

values based on received messages

Step 3

 Each process sends its vector to all

other processes

Step 4

 Each process determines a result vector

using a majority count for values from

received vectors

DS WS 2014 46

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Example of Byzantine with k fault, n

=4
Sender\Receiver P1 P2 P3 P4

P1 1 1 1 1

P2 2 2 2 2

P3 x y 3 z

P4 4 4 4 4

Vector (P) (1,2,x,4) (1,2,y,4) (1,2,3,4) (1,2,z,4)

DS WS 2014 47

Sender\Receiver P1 P2 P3 P4

P1 (1,2,x,4) (1,2,x,4) (1,2,x,4)

P2 (1,2,y,4) (1,2,y,4) (1,2,y,4)

P3 (a,b,c,d) (e,f,g,h) (i, j, k,l)

P4 (1,2,z,4) (1,2,z,4) (1,2,z,4)

Majority Vote (?

== UNKNOWN)

(1,2,?,4) (1,2,?,4) (1,2,?,4)

Step 1

Step 2

Step 3

Step 4

Recovery

 Rollback- versus forward-recovery

 Rollback (Backwards): go back to a previous correct

state

 Forward: bring the system into a correct new state

 This means we have to know the error in advance

 Rollback requires historical records

 Checkpoint-based rollback recovery

 Log-based rollback recovery

DS WS 2014 48

„To replace an erroneous state with an error-free

state“

Checkpointing

Goal: record a consistent global state – a

distributed snapshot

Consistent global state: P sends Q a message m:

if the state of Q reflects m receipt, then the state

of P reflects sending m

DS WS 2014 49

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007,

Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007,

Prentice-Hall

Independent versus coordinated

checkpointing

Independent checkpointing:

 Each process records its local

state without any coordinated

action

 Difficult to find a recovery line

(domino effect)

DS WS 2014 50

Source: E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David

B. Johnson. 2002. A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surv. 34, 3 (September 2002), 375-408.

Source: E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David

B. Johnson. 2002. A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surv. 34, 3 (September 2002), 375-408.

Coordinated checkpointing:

 Coordinate the record of states

 Require synchronization

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Log-based rollback recovery

 Given a process

 Nondeterministic events (affect the process): receipt of a message,

creation of a process, an internal event

 Deterministic events (effects caused by the process): send a message

 An interval is an (a b) (happen-before)

 Program execution is a sequence of deterministic state

intervals, each starting with a nondeterministic event

 all nondeterministic events can be identified and their determinants

containing all information necessary for replaying can be logged

 intervals can be replayed with a known result

DS WS 2014 51

Send()

Receive() create()

P1

P2

Protocols

 Protocols

 Pessimistic log-based rollback recovery

 Assumption: A failure can occur after any nondeterministic

event

 Optimistic log-based rollback recovery

 Assumption: logging will complete before a failure happens

 Causal log-based rollback-recovery

 Avoid orphan processes is the most important point

DS WS 2014 52

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

HOMEWORK

DS WS 2014 53

Understanding performance and

failures

 Goal: given a system

 Present some important performance metrics and

how to measure and optimize them

 Identify some faults, possible techniques to deal with

these faults

 Some systems/services under investigation

 Socket with TCP/UDP, Brokers in MOM, MPI, Web

services, naming service, clock synchronization

systems, P2P, RPC

 They are in lectures 2-5

DS WS 2014 54

Communication

 A socket communication using TCP/UDP

 Performance: response time, message latency,

 Dependability:

 Types of failures: Omission (e.g., TCP lost), or crash

(Connection failure)

 MOM

 Performance: time breakdowns for end-to-end

message delivery

 Gossip

 Dependability: types of failures

DS WS 2014 55

RPC

 Performance

 Metrics: Throughput, Response time, marshalling

time, waiting time

 How to measure them?

 Dependability

 Types of Failures: Client cannot locate server, Client

request is lost, Server crashes, Server response is

lost, Client crashes

 Fault-tolerance techniques

DS WS 2014 56

Server handling

 System model:

 A system handling requests from multiple clients

 The system utilizes several servers and a single load

balancer

 Performance: throughput, response time, waiting time

 Dependability

 Availability: does increasing the number of servers

increase the availability?

 Faults: which are possible faults at runtime?

 Fault-tolerance: Peer-to-peer Group or Hierarchical

Group

DS WS 2014 57

Summary

 Understanding performance and dependability is the

key for designing, operating and optimizing distributed

systems

 Dependability and performance are highly complex and

interdependent

 Fault tolerance techniques are just a sub set of

techniques for dealing with failures

 With cloud computing we could introduce more techniques

 Evaluating performance and dependability requires a

careful look at metrics, type of faults, and system

structures based on different views

DS WS 2014 58

59

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

DS WS 2014

