
Distributed Systems
Principles and Paradigms

Christoph Dorn

Distributed Systems Group,
Vienna University of Technology

c.dorn@infosys.tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/dorn

Slides adapted from Maarten van Steen, VU Amsterdam, steen@cs.vu.nl

Chapter 09: Security

http://www.infosys.tuwien.ac.at/staff/dorn

Contents

Chapter
01: Introduction
02: Architectures
03: Processes
04: Communication
05: Naming
06: Synchronization
07: Consistency & Replication
08: Fault Tolerance
09: Security
10: Distributed Object-Based Systems
11: Distributed File Systems
12: Distributed Web-Based Systems
13: Distributed Coordination-Based Systems

DS WS 2014 2 / 78

Overview

• Introduction
• Secure channels
• Access control
• Security management

DS WS 2014 3 / 78

Security: Dependability revisited

Basics

A component provides services to clients. To provide services, the
component may require the services from other components⇒ a
component may depend on some other component.

Property Description
Availability Accessible and usable upon demand for

authorized entities
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainable Easy repair of a failure
Integrity No accidental or malicious alterations of

information have been performed (even by
authorized entities)

DS WS 2014 4 / 78

Security: Dependability revisited

Observation

In distributed systems, security is the combination of availability,
integrity, and confidentiality.

Property Description
Confidentiality No unauthorized disclosure of information
Availability Accessible and usable upon demand for

authorized entities
Integrity No accidental or malicious alterations of

information have been performed (even by
authorized entities)

DS WS 2014 5 / 78

Security threats
The players

• Subject: Entity capable of issuing a request for a service
as provided by objects

• Channel: The carrier of requests and replies for services
offered to subjects

• Object: Entity providing services to subjects.

DS WS 2014 6 / 78

Security threats

The threats

Threat Channel Object/Server
Interruption Preventing message

transfer
Denial of service

Inspection Reading the content
of transferred
messages

Reading the data
contained in an
object/server

Modification Changing message
content

Changing an
object/server’s
encapsulated data

Fabrication Inserting messages Spoofing an
object/server

DS WS 2014 7 / 78

Security mechanisms
Issue

To protect against security threats, we have a number of
security mechanisms at our disposal:
• Encryption: Transform data into something that an attacker

cannot understand (confidentiality). It is also used to check
whether something has been modified (integrity).

• Authentication: Verify the claim that a subject says it is S:
verifying the identity of a subject. (Who is accessing/
requesting?)

• Authorization: Determining whether a subject is permitted
to make use of certain services. (Who is allowed to
access/request a service/)

• Auditing: Trace which subjects accessed what, and in
which way. Useful only if it can help catch an attacker.
(Attackers will try to avoid leaving traces)

DS WS 2014 8 / 78

Design issue: Focus of control

Object

Method

State

Data is protected against
wrong or invalid operations

Invocation

Data is protected against
unauthorized invocations

Data is protected by
checking the role of invoker

(a) (b)

(c)

DS WS 2014 9 / 78

Design issue: Layering of mechanisms

Issue

At which logical level are we going to implement security
mechanisms?

Application Application

Middleware Middleware

OS Services OS Services

Transport Transport
Network Network
Datalink Datalink
Physical PhysicalHardware Hardware

OS kernel OS kernel
Low-level protocols

High-level protocols

Network

DS WS 2014 10 / 78

Design issue: Layering of mechanisms

Trusted Computing Base

Typically: security at lower layers often more convenient, BUT

Important

Whether security mechanisms are actually used is related to
the trust a user has in those mechanisms. (Do you trust the
network layer between your smart phone and your email
server?) No trust⇒ implement your own mechanisms (at
higher levels). (Now, you need to trust SSL/TLS ...)

DS WS 2014 11 / 78

Fundamental Laws of Security - 1

Important

The security of any distributed system is exactly as good as its
weakest component/link.

DS WS 2014 12 / 78

Fundamental Laws of Security - 2

The weakest component is typically the human in the loop

”I’ve done my best to make your user name and password as
secure as possible...but you still move your lips when you type!”

DS WS 2014 13 / 78

Fundamental Laws of Security - 3
Observation

The security of your system needs to depend on technical and
mathematical facts, and never on hidden information.

DS WS 2014 14 / 78

Cryptography

Plaintext, P

Decryption
key, D

Encryption
key, E

Encryption
method

Decryption
method

Passive intruder
only listens to C

Active intruder
can alter messages

Active intruder
can insert messages

Plaintext

K K

Ciphertext
C = E (P)K

Sender Receiver

DS WS 2014 15 / 78

Cryptography

Methods

• Symmetric system: Use a single key to (1) encrypt and (2)
decrypt. Requires that sender and receiver share the
secret key. (e.g., DES, AES) P = DK (EK (P))

• Asymmetric system: Use different keys for encryption and
decryption, of which one is private (K−A), and the other
public (K+

A). (e.g., RSA) P = DK D(EK E(P))
• Hashing system: Only encrypt data and produce a

fixed-length digest. There is no decryption; only
comparison is possible. (e.g., MD5, SHA-1)

DS WS 2014 16 / 78

Cryptography

Use Cases

• Symmetric system: Encryption (prevention of interception)
• Asymmetric system: Authentication (prevention of

fabrication)
• Hashing system: Integrity (prevention of modification)

DS WS 2014 17 / 78

Cryptographic functions

Essence

Make the encryption method E public, but let the encryption as
a whole be parameterized by means of a key S (Same for
decryption)
• One-way function: Given some output mout of ES, it is

(analytically or) computationally infeasible to find
min : ES(min) = mout

• Example: given ES = Shakespeare and mout = MacBeth
infeasible to find/define the environment min that let
Shakespeare’s mind to produce MacBeth

DS WS 2014 18 / 78

Cryptographic functions

Essence

• Weak collision resistance: Given the pair 〈m,ES(m)〉, it is
computationally infeasible to find an m∗ 6= m such that
ES(m∗) = ES(m)

• Example: m = mouse is afraid of and ES(m) = cat unable
to find m∗ = dog is afraid of and ES(m∗) = cat

• Strong collision resistance: It is computationally infeasible
to find any two different inputs m∗ and m such that
ES(m∗) = ES(m)

• Example: unable to find m = dog Rex is afraid of and
m∗ = dog Struppi is afraid of and ES(m∗) = ES(m) = cat

DS WS 2014 19 / 78

Cryptographic functions

Essence (cnt’d)

• One-way key: Given an encrypted message mout,
message min, and encryption function E , it is analytically
and computationally infeasible to find a key K such that
mout = EK (min)

• Weak key collision resistance: Given a triplet 〈m,K ,E〉, it is
computationally infeasible to find an K ∗ 6= K such that
EK ∗(m) = EK (m)

• Strong key collision resistance: It is computationally
infeasible to find any two different keys K and K ∗ such that
for all m: EK (m∗) = EK (m)

DS WS 2014 20 / 78

Secure channels

• Authentication
• Message Integrity and confidentiality

DS WS 2014 21 / 78

Secure channels
A

B

C

A

A

D

B

C

D

B

Confidential channel

Authenticated and
tamperproof channel

Secure channel

What’s a secure channel

• Both parties know who is on the other side (authenticated).
• Both parties know that messages cannot be tampered with

(integrity).
• Both parties know messages cannot leak away (confidentiality).

DS WS 2014 22 / 78

Authentication versus integrity

Important

Authentication and data integrity rely on each other: Consider
an active attack by Trudy on the communication from Alice to
Bob.

Authentication without integrity

Alice’s message is authenticated, and intercepted by Trudy,
who tampers with its content, but leaves the authentication part
as is. Authentication has become meaningless.

Integrity without authentication

Trudy intercepts a message from Alice, and then makes Bob
believe that the content was really sent by Alice. Integrity has
become meaningless.

DS WS 2014 23 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 24 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 25 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 26 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 27 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 28 / 78

Authentication: Secret (shared) keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)
A

lic
e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he

is talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is

talking to Bob.

DS WS 2014 29 / 78

Authentication: Secret keys

Improvement

Combine steps 1&4, and 2&5. Price to pay: correctness.

DS WS 2014 30 / 78

Authentication: Secret keys

Improvement

Combine steps 1&4, and 2&5. Price to pay: correctness.

DS WS 2014 31 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 32 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 33 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 34 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 35 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 36 / 78

Authentication: Secret keys reflection
attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but

uses challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove

he is Alice.
DS WS 2014 37 / 78

Authentication: Secret keys reflection
attack

Question to the audience

How can we fix the protocol?

Your choices are:

• Bob remembers which challenges he used (head)
• Bob disallows a second session (nose)
• This protocol is broken, no way to fix it (ear)

DS WS 2014 38 / 78

Authentication: KDC

Problem

With N subjects, we need to manage N(N−1)/2 keys, each
subject knowing N−1 keys⇒ use a trusted Key Distribution
Center that generates keys when necessary.

A
lic

e

B
ob

1

22 KA,BKA,KDC() KA,BKB,KDC()

A,B K
A

,B
K

D
C

, g
en

er
at

es

Question

How many keys do we need to manage?

DS WS 2014 39 / 78

Authentication: KDC
(Needham-Schroeder)

Inconvenient

We need to ensure that Bob knows about KA,B before Alice
gets in touch⇒ let Alice do the work and pass her a ticket to
set up a secure channel with Bob.

A
lic

e

B
ob

1

3

2

, A, B

K
D

C

RA1

KA,BKA,KDC KA,B, KB,KDC()RA1, B,()A,

(), KA,BB,KDC ()KA,B
A,KA2R

KA,B RBRA2 1,()

KA,B RB 1()

4

5

DS WS 2014 40 / 78

Needham-Schroeder: Subtleties

A
lic

e

B
ob

1

3

2

, A, B

K
D

C

RA1

KA,BKA,KDC KA,B, KB,KDC()RA1, B,()A,

(), KA,BB,KDC ()KA,B
A,KA2R

KA,B RBRA2 1,()

KA,B RB 1()

4

5

Some issues

Q1: Why does the KDC put Bob into its reply message, and
Alice into the ticket?

Q2: The ticket sent back to Alice by the KDC is encrypted with
Alice’s key. Is this necessary?

DS WS 2014 41 / 78

Needham-Schroeder: Subtleties

Security flaw

Suppose Trudy finds out Alice’s key⇒ she can use that key
anytime to impersonate Alice, even if Alice changes her private
key at the KDC.

Reasoning

Once Trudy finds out Alice’s key, she can use it to decrypt a
(possibly old) ticket for a session with Bob, and convince Bob to
talk to her using the old session key.

Solution

Have Alice get an encrypted number from Bob first, and put
that number in the ticket provided by the KDC⇒ we’re now
ensuring that every session is known at the KDC.

DS WS 2014 42 / 78

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s
public key K+

B .
2: Bob decrypts the message, generates a secret key KA,B

(session key), proves he’s Bob (by sending RA back), and
sends a challenge RB to Alice. Everything’s encrypted with
Alice’s public key K+

A .
3: Alice proves she’s Alice by sending back the decrypted

challenge, encrypted with generated secret key KA,B

DS WS 2014 43 / 78

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s
public key K+

B .
2: Bob decrypts the message, generates a secret key KA,B

(session key), proves he’s Bob (by sending RA back), and
sends a challenge RB to Alice. Everything’s encrypted with
Alice’s public key K+

A .
3: Alice proves she’s Alice by sending back the decrypted

challenge, encrypted with generated secret key KA,B

DS WS 2014 44 / 78

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s
public key K+

B .
2: Bob decrypts the message, generates a secret key KA,B

(session key), proves he’s Bob (by sending RA back), and
sends a challenge RB to Alice. Everything’s encrypted with
Alice’s public key K+

A .
3: Alice proves she’s Alice by sending back the decrypted

challenge, encrypted with generated secret key KA,B

DS WS 2014 45 / 78

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s
public key K+

B .
2: Bob decrypts the message, generates a secret key KA,B

(session key), proves he’s Bob (by sending RA back), and
sends a challenge RB to Alice. Everything’s encrypted with
Alice’s public key K+

A .
3: Alice proves she’s Alice by sending back the decrypted

challenge, encrypted with generated secret key KA,B

DS WS 2014 46 / 78

Confidentiality

Solutions

Secret key: Use a shared secret key to encrypt and decrypt all
messages sent between Alice and Bob

Public key: If Alice sends a message m to Bob, she encrypts it with
Bob’s public key: K+

B (m)

Problems with keys

• Keys wear out: The more data is encrypted by a single key, the
easier it becomes to find that key⇒ don’t use keys too often

• Danger of replay: Using the same key for different
communication sessions, permits old messages to be inserted in
the current session⇒ don’t use keys for different sessions

DS WS 2014 47 / 78

Confidentiality

Problems with keys

• Compromised keys: If a key is compromised, you can never use
it again. Really bad if all communication between Alice and Bob
is based on the same key over and over again⇒ don’t use the
same key for different things.

• Temporary keys: Untrusted components may play along perhaps
just once, but you would never want them to have knowledge
about your really good key for all times⇒ make keys disposable

DS WS 2014 48 / 78

Confidentiality

Essence

Don’t use valuable and expensive keys for all communication, but
only for authentication purposes.

Consequence

Introduce a “cheap” session key that is used only during one single
conversation or connection (“cheap” also means efficient in
encryption and decryption: in RSA 100x-1000x slower than DES).

DS WS 2014 49 / 78

Digital signatures

Scenario

Alice sells her iPhone5 to Bob for 500 EUR
• Bob wants to ensure, it’s indeed Alice selling the item (and

vice versa)
• Bob wants to ensure, that Alice cannot later claim a higher

price
• Alice wants to ensure that Bob cannot later claim a lower

price

DS WS 2014 50 / 78

Digital signatures

Harder requirements

• Authentication: Receiver can verify the claimed identity of
the sender

• Nonrepudiation: The sender can later not deny that he/she
sent the message

• Integrity: The message cannot be maliciously altered
during, or after receipt

Solution

Let a sender sign all transmitted messages, in such a way that
(1) the signature can be verified and (2) message and signature
are uniquely associated

DS WS 2014 51 / 78

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A
⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the
original message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to
Bob.

3: Bob decrypts the incoming message with his private key K−B . We
know for sure that no one else has been able to read m, nor m′

during their transmission.
4: Bob decrypts m′ with Alice’s public key K+

A . Bob now knows the
message came from Alice.

DS WS 2014 52 / 78

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A
⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the
original message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to
Bob.

3: Bob decrypts the incoming message with his private key K−B . We
know for sure that no one else has been able to read m, nor m′

during their transmission.
4: Bob decrypts m′ with Alice’s public key K+

A . Bob now knows the
message came from Alice.

DS WS 2014 53 / 78

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A
⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the
original message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to
Bob.

3: Bob decrypts the incoming message with his private key K−B . We
know for sure that no one else has been able to read m, nor m′

during their transmission.
4: Bob decrypts m′ with Alice’s public key K+

A . Bob now knows the
message came from Alice.

DS WS 2014 54 / 78

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A
⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the
original message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to
Bob.

3: Bob decrypts the incoming message with his private key K−B . We
know for sure that no one else has been able to read m, nor m′

during their transmission.
4: Bob decrypts m′ with Alice’s public key K+

A . Bob now knows the
message came from Alice.

DS WS 2014 55 / 78

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A
⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the
original message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to
Bob.

3: Bob decrypts the incoming message with his private key K−B . We
know for sure that no one else has been able to read m, nor m′

during their transmission.
4: Bob decrypts m′ with Alice’s public key K+

A . Bob now knows the
message came from Alice.

DS WS 2014 56 / 78

Message digests

Basic idea

Don’t mix authentication and secrecy. Instead, it should also be
possible to send a message in the clear, but have it signed as
well⇒ take a message digest, and sign that.

KA (H(m))

KA

Alice's
private key,

KA
+

Alice's
public key,

Alice's computer Bob's computer

H(m) H(m)

Hash
function,

H

Hash
function,

H

m

m

Compare OK

m

DS WS 2014 57 / 78

Security management

• Key establishment and distribution
• Authorization management

DS WS 2014 58 / 78

Key establishment: Diffie-Hellman

Observation

We can construct secret keys in a safe way without having to
trust a third party (i.e. a KDC):
• Alice and Bob have to agree on two large numbers, n

(prime) and g. Both numbers may be public.
• Alice chooses large number x , and keeps it to herself. Bob

does the same, say y .

DS WS 2014 59 / 78

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits.
In practice, n,g > 512 bits.

DS WS 2014 60 / 78

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits.
In practice, n,g > 512 bits.

DS WS 2014 61 / 78

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits.
In practice, n,g > 512 bits.

DS WS 2014 62 / 78

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits.
In practice, n,g > 512 bits.

DS WS 2014 63 / 78

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits.
In practice, n,g > 512 bits.

DS WS 2014 64 / 78

Key distribution

Essence

Authentication requires cryptographic protocols,⇒ require session
keys to establish secure channels, who’s responsible for handing out
keys?

• Secret keys

• Create your own and exchange it out of band
• Trust a key distribution center (KDC) and ask it for a key.

• Public keys: How to guarantee that A’s public key is actually
from A?

• Personally exchanged out of band
• Use a trusted certification authority (CA) to hand out public

keys. A public key is put in a certificate, signed by a CA.

• Trust Hierarchy: work your way up the hierarchy to increase your
confidence

DS WS 2014 65 / 78

Key distribution: getting keys to owners
Plaintext, P

Plaintext, P

Decryption
key, K

Private
key, K

Encryption
key, K

Public
key, K

Encryption
method

Encryption
method

Decryption
method

Decryption
method

Ciphertext

Ciphertext

Plaintext

Plaintext

Symmetric
key generator

Asymmetric
key generator

Secure channels with
confidentiality and authentication

Secure channel with
confidentiality and

authentication

Secure channel with
authentication only

(a)

(b)

+

DS WS 2014 66 / 78

Certificate Lifetime

Essence

Lifelong certificates would be nice but need revocation when
compromised

• Certificate Revocation Lists: CRL regularly published by CA
• Expiration Time: limit lifetime, invalid after expiration time

(extreme case reduce to zero) and couple with CRL
• In Practise: certificates with limited lifetime, users hardly check

CRLs, but some software installers do

DS WS 2014 67 / 78

Some Common Attack Scenarios

Distributed systems security can be compromised on any
layer

Thus remember: any security breach potentially renders the
entire system insecure.

Just a small set of examples

Following attacks happen in practice all the time

• Buffer Overflows
• SQL Injection Attach
• Cross-Side Scripting Attach (XSS)
• Distributed Denial-of-Service Attack (DDoS)
• Sidechannel Attacks
• Social Engineering

DS WS 2014 68 / 78

Buffer Overflows

Common security problem in unmanaged programming
languages (e.g., C / C++)

• Input data larger than reserved heap space
• Hence data flows over into next frame, allowing an attacker

to overwrite the return address pointer of a procedure call
with a custom address

• Hence allowing the attacker to execute arbitrary code

DS WS 2014 69 / 78

Buffer Overflow

Source

http://cis1.towson.edu/˜cssecinj/modules/cs2/
buffer-overflow-cs2-c/

DS WS 2014 70 / 78

http://cis1.towson.edu/~cssecinj/modules/cs2/buffer-overflow-cs2-c/
http://cis1.towson.edu/~cssecinj/modules/cs2/buffer-overflow-cs2-c/

SQL Injection Attack

Observation

Some web applications do not sufficiently check data received
from users before issuing SQL queries

select ∗ from users where user = $username
and pw = md5($pw)

now assume following input:

$username = ’1 or 1=1; drop table users; --’

and you get:

select ∗ from users where user = 1 or 1=1;
drop table users ; −−

DS WS 2014 71 / 78

SQL Injection Attack

DS WS 2014 72 / 78

Cross-Side Scripting Attack (XSS)

Observation

Some web applications do not sufficiently check data received
from users
• Similar principle to SQL injection
• Allows attacker to inject arbitrary scripts into a legit

(trustable) web site
• Example: blog with commentary function that accepts

arbitrary HTML code

Very i n t e r e s t i n g a r t i c l e !

<s c r i p t type = ” t e x t / j a v a s c r i p t ”>
<!−− window . l o c a t i o n =” h t t p : / / 6 2 . 1 7 8 . 7 1 . 1 0 5 ” ;
−−>
</ s c r i p t >

DS WS 2014 73 / 78

Distributed Denial-of-Service Attack
(DDoS)

Observation

Attacker uses a network of hacked machines

• Bots/Zombies overload the resources of the target with requests
• Difficult to protect against (needs to be done at ISP level)
• Difficult to identify the attacker (all request come from

unassuming zombies)

DS WS 2014 74 / 78

Sidechannel Attacks & Social
Engineering

Ignore the technical security mechanisms

finding out the secret that the mechanism was based on
• Phishing for passwords or keys
• NSA demanding private keys from certification authorities
• Reverse-engineering keys in embedded devices by

measuring energy comsumption

Social Engineering

Sidechannel attacks on humans behind the ”secure” technical
system
• usual assumption: people are easily manipulated
• e.g.: incoming call ”Hey, I’m from IT. We have a problem

with your account here”

DS WS 2014 75 / 78

Further Lectures on Security

• [183.367] Security for Systems Engineering
• [183.645] Advanced Security for Systems Engineering
• [183.633] IT Security in Large IT Infrastructures
• [188.312] Organizational Aspects of IT Security
• [183.606] Seminar aus Security

DS WS 2014 76 / 78

Organizational Issues

Next/Last Lecture

on Monday, Nov 10.
No lecture next week!

Lecture Feedback

on TISS: between 24.11.2014 and 12.02.2015

DS WS 2014 77 / 78

Looking for a Bachelor Thesis topic?

Check out some topics on my webpage

http://christophdorn.wordpress.com/
stuff-for-students
Not related to consistency, replication, or security algorithms,
but very implementation-centric
• Software Architecture
• Self-Adaptive Systems
• Collaboration/Coordination Systems
• Context-aware Systems

DS WS 2014 78 / 78

http://christophdorn.wordpress.com/stuff-for-students
http://christophdorn.wordpress.com/stuff-for-students

	Security
	9.1 Introduction
	9.2Secure Channels
	9.4 Security Management
	Some Common Attack Scenarios

