
A Serverless Computing Fabric for Edge & Cloud
Stefan Nastic, Philipp Raith, Alireza Furutanpey, Thomas Pusztai, Schahram Dustdar

Distributed Systems Group,
TU Wien, Vienna, Austria

Abstract—Serverless computing has been establishing itself as a
compelling paradigm for the development and of modern cloud-
native applications. Serverless represents the next step in the
evolution of cloud programming models, services and platforms,
which is especially appealing due to its low management
overhead, easy deployment, scale-to-zero and the promise of
optimized costs. Recently, due to the advantages it offers, the
serverless paradigm has been growing beyond traditional clouds,
making its way to the Edge. The natural evolutionary step for
serverless computing is to unify the Edge and the Cloud into
what we refer to as Edge-Cloud Continuum. In this paper, we
outline our vision of the Serverless Computing Fabric (SCF)
for the Edge-Cloud continuum. We introduce the reference
architecture for the SCF and show how it unlocks the full
potential of the Edge-Cloud continuum. We also discuss main
opportunities and challenges, which need to be overcome in order
to achieve the vision of the Serverless Computing Fabric. Finally,
we introduce key design principles together with core enabling
runtime mechanisms, which are intended to serve as a research
road map towards the Serverless Computing Fabric for Edge-
Cloud continuum.

Index Terms—Serverless Computing, Cloud Computing, Edge
Computing, Reliability Engineering, Service Level Objectives

I. INTRODUCTION

With the increasing growth of edge computing, fog
computing and the Internet of Things (IoT), abundant
computing infrastructure and edge resources are becoming
available and increasingly utilized by various applications.
Currently there are many definitions of edge computing. Some
researchers view the Edge as an extension of cloud’s content
delivery networks [36], while others propose more edge-
enteric view [15]. We believe that most of such exclusionary
views on edge computing fail to capture its full potential. To
fully tap into the potential of edge computing, we believe
that a more holistic view, which considers both Edge and
Cloud is better suited. In particular, we view Edge as a main
constituent of a large-scale, geographically distributed and
hierarchically organized compute continuum. We refer to it
as Edge-Cloud continuum. The Edge-Cloud continuum spans
from the centralized cloud to the far edge of the infrastructure
to offer computing, networking and data resources. At the
same time, the Edge-Cloud continuum poses new challenges
(e.g., [41]) and calls for new approaches to enable delivering
such resources in a uniform manner.

Serverless computing is an emerging paradigm, which
typically refers to a software architecture where an application
is decomposed into “trigger” and “actions” or functions.
Typically there is a platform, which enables seamless hosting

and execution of such developer-defined functions, making it
easy to develop, manage, scale, and operate those functions.
The complexity mitigation is achieved by incorporating
sophisticated runtime mechanisms into the serverless platform
and relieving the users from those responsibilities. Function
as a Service or FaaS is the underlying programming and
execution model for Serverless computing. FaaS model is the
core of the serverless computing and sometimes it is even
equated with serverless computing. However, without suitable
supporting services, e.g., for persistent storage, and native
interfaces, e.g., to access network or file system, FaaS on its
own has limited practical benefits. Because of this, Serverless
has been evolving into an ecosystem, typically comprising
a FaaS platform and a large number of supporting cloud
services [21]. Moreover, increasing number of traditional
services such as DBaaS have been appearing in a serverless or
more precisely a FaaS flavor. Therefore, serverless computing
can be considered as the next step in the evolution of cloud
computing or more generally of utility computing.

Although Serverless was born in the cloud, its true potential
is unlocked at the Edge, where the lightweight and dynamic
FaaS functions can take full advantage of the vast and
geo-distributed infrastructure. Conversely, Serverless has the
potential to enable and foster proliferation of Edge computing,
by reducing the complexity that is currently associated with
developing and operating Edge applications. Additionally,
main serverless properties such as no idle execution and out-
of-the-box scalability are particularly useful to bring much
desired improvements to the reliability and performance of the
Edge-Cloud applications. Finally, specific areas such as Edge
Intelligence (EI) and AI can particularly benefit from enabling
the serverless principles and models at the Edge, since EI and
AI applications are notoriously hard to operate, but at the same
time they significantly benefit from specialized infrastructure
(e.g., AI inference accelerators). Unfortunately, still to date the
serverless paradigm typically remains limited to the cloud.

In this paper, we propose a novel Serverless Computing
Fabric (SCF) for the Edge-Cloud continuum. The SCF
is a continuation of our previous work in Serverless and
Deviceless Edge Computing [16], [26] and presents our view
on the serverless paradigm in the Edge-Cloud continuum. We
introduce a reference architecture for the SCF and show how
it unlocks the full potential of the Edge-Cloud continuum.
This is mainly achieved by abstracting away infrastructure
complexities, offering reliable application execution, and
offering adequate programming support. We particularly focus
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Fig. 1: Overview of Main Research Challenges in Serverless Computing in Edge-Cloud Continuum

on how the SCF fosters novel EI and AI applications. Finally,
we introduce key design principles and core enabling runtime
mechanisms, which are intended to serve as a research road
map towards the Serverless Computing Fabric for Edge-Cloud
continuum.

The remainder of the paper is structured as follows. In
Section II, we discuss the main research challenges in the
Serverless Computing Fabric. We also look at the most
important opportunities unlocked by SCF in the Edge-Cloud
continuum. Section III introduces our vision for the SCF and
Section IV provides detailed descriptions of the main design
principles and the core enabling mechanisms of the SCF. In
Section V, we discuss the related work. Finally, Section VI
concludes the paper.

II. OPPORTUNITIES & RESEARCH CHALLENGES IN
SERVERLESS COMPUTING FOR EDGE-CLOUD CONTINUUM

The Edge-Cloud continuum resources such as compute and
storage are poised to become utility, in the sense that Edge-
Cloud continuum can deliver computing resources the way
a power utility doles out electricity. Serverless is a perfectly
suitable paradigm and execution model to enable this vision
due to its promise of minimal operation overhead, transparent
scaling, no idle execution (due to scale-to-zero feature) and
turn-key high availability.

More specifically, benefits of combining Serverless and
Edge paradigms, include:

• Edge-native backend services - Serverless Computing
enables minimal operational management of fine-grained
functions, but it also requires a multitude Backend-
as-a-Service (BaaS) to be able to develop serverless
applications that go beyond toy examples. Examples
of such BaaS services include storage, messaging
middleware, caching solutions, and so forth. BaaS not

only facilitates FaaS in general, but it can also provide
essential backend services for specialized applications
and service paradigms. For example, streaming IoT
platforms require reliable and robust messaging services
to process data. Low latency applications benefit from
caching and storage solutions close to the application
instance. Moreover, in contrast to short-running functions,
backend services are long-running and require special
attention in resource-constrained environments to not put
too much strain on devices. Storage solutions have to
adapt and migrate due to the geo-distributed nature of
the Edge-Cloud continuum and accommodate toward user
mobility (i.e., cars). Further, messaging middleware must
be placed toward the user to guarantee low latency and
additionally reliable transmission. Reliability is a key
concern in systems with unstable network connections.
Caching solutions enable low latency applications but
have to intelligently manage the cached content to not
overload nodes. A dedicated set of runtime mechanisms
to manage and provide reliable backend services enables
this opportunity.

• Sustainable service delivery at the Edge - Traditional
deployment models typically demand long-term running
servers in order to enable sustainable service delivery.
However, this exclusive allocation needs to retain
resources regardless of whether the user application
is running or not. A minimal resource footprint is
crucial for Edge-Cloud systems as the infrastructure is
heterogeneous, and devices toward the edge tend to
be resource-constrained. Serverless Edge Computing can
facilitate minimizing resource usage due to the elasticity
of functions. FaaS platforms also allow complete control
over deployments making it possible to apply resource
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management strategies that optimize toward resource
efficiency and can reduce carbon emissions. Additionally,
they can scale down the number of function instances
to zero if they are not needed. The combination of
an extended serverless programming model, an elastic
system to monitor and enforce SLOs, and an intelligent
and autonomous orchestration will enable sustainable
service delivery across the Edge-Cloud Continuum.

• Enabling Edge Intelligence - EI is characterised by
an emphasis on AI-based applications that flourish in
the Edge-Cloud continuum [12]. These applications
range from short-running inference tasks (e.g., Mobile
Augmented Reality) to long-running and resource-
demanding model training jobs. Besides resource
and performance requirements, EI applications are
heterogeneous. They have a unique position across
applications as the code itself might be simple, but
the used models differ vastly in execution. Emerging
approaches to split models and perform inference across
multiple devices [24], as well as distributed training
of models [20], further increase the complexity of
managing these deployments. Specifically, Serverless
Edge Computing enables platform providers to deploy
strategies that can take the various characteristics into
account that make EI applications complex to manage.
This includes an intelligent control plane and an elastic
data plane. The control plane includes pro-active scaling
approaches, intelligent and distributed high-throughput
schedulers, and location- and network-aware request
routing approaches. The elastic data plane must adapt
to the dynamic nature of Edge-Cloud infrastructures.
This dynamic part includes nodes that leave and re-
join, unstable network connections and heterogeneous
devices with different capabilities. Current approaches
[33], [44] explore already the potential of Serverless Edge
Computing platforms. Still, we show in this paper our
vision of how to go further to enable Edge Intelligence
using Serverless Edge Computing.

A. Main Research Challenges

1) Performance and SLO Challenges: Despite flexible
scaling and high availability offered by the serverless
paradigm, there are still a number of performance and SLO
challenges, which need to be dealt with when operating
serverless platforms and managing serverless applications. We
identify the most important challenges, which can affect the
serverless workloads in terms of performance degradation and
SLO violations.

• Startup and scheduling latency (a.k.a “cold start”).
• Lack of performance isolation (a.k.a “noisy neighbor” or

performance interference [46]).
• Inconsistent performance due to hardware heterogeneity

(also present in Cloud only solutions!).
• Limited support for application SLOs. Typically, one can

only specify memory requirements, function timeouts and
concurrency.

2) Data Management Challenges: Serverless FaaS
platforms typically provide programming and execution
support to the serverless functions, hence they are almost
exclusively focused on managing the compute resources.
Managing data and function states largely remains user’s
concern. The most important challenges related to data
management in serverless applications include:

• State management for stateful computations.
• Function execution latency due to lack of data locality.
• Efficient and cost-effective caching solutions.
• Trade-off between data and function execution movement

(i.e., move execution where data sits or move data to
"fast" hardware)

3) Reliability Engineering Challenges: Reliability
engineering encompasses the ability of a workload to
perform its intended function correctly and consistently
at any given time, i.e., when it is expected to. Except
for the reliability guarantees for side-effect-free stateless
computations, there are numerous reliability engineering
challenges including:

• Dealing with function failures beyond simple retries [19].
• Mitigating network partitioning, which can render

functions useless (e.g., due to detached storage).
• Operating fault-tolerant mission-critical Edge workloads.
• Suboptimal function composition implementation can

lead to high cost and slow performance [5].

4) Application Development Challenges: As previously
discussed, serverless FaaS platforms mainly focus on
mitigating runtime complexities related to operating and
managing FaaS functions. They typically offer insufficient
programming support, which is often limited to rudimentary
programming models, such as triggering a FaaS function with
an universal event. Unfortunately, this leaves a significant gap,
putting a lot of burden on developers:

• Misconfigurations of support services and infrastructure
resources due to suboptimal defaults.

• Insufficient error handling mechanisms.
• Limited type safety support for function composition.
• Testing the functions beyond the unit tests, e.g.,

integration testing.
• Concurrency management and transactions [19]

5) AI & EI Challenges: We distinguish between
intelligence for the Edge and intelligence at the Edge.
The former concerns how we can apply AI methods to solve
problems for which handcrafted solutions would be infeasible
or of poor quality, such as constrained optimization problems.
The latter, that is intelligence at the Edge addresses how
we can deploy AI & EI models for intelligent tasks running
in the Edge-Cloud continuum, such as voice recognition.
Challenges concerning both problems are related to the
heterogeneity of the necessary AI accelerators to execute
models, i.e., to provide the right resources for the various
tasks and environments.

• SLO-aware model selection in the ample solution space.
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• Dealing with model execution overhead, such as latency
and bandwidth consumption.

• Optimal splitting of the inference tasks across Edge-
Cloud continuum.

• Native access to specialized hardware (e.g., AI inference
accelerators) and core AI libraries.

III. SERVERLESS COMPUTING FABRIC

A novel software-defined, intelligence-driven, and Internet-
centric solution is required to address the challenges of the
serverless Edge-Cloud systems. We refer to such solution as
Serverless Computing Fabric (SCF). Next, we present our
vision for the novel Serverless Computing Fabric and outline
its high-level reference architecture.

The SCF represents a paradigm shift from traditional
services and platforms computing to a fabric-centric
computing where digital resources, infrastructures, and
systems become commodities, which permeate the entire
computational and data continuum. The SCF advocates a
seamless integration of existing and emerging computational
resources.

The SCF deals with geographically dispersed and
heterogeneous resources. However, rather than connecting
nodes for a common goal, as many of the contemporary
approaches do, in SCF the Edge-Cloud resources are
democratized and exposed in a uniform manner to
accommodate execution of arbitrary user-defined functions
and applications across the entire Edge-Cloud continuum.
Specifically, the SCF offers general-purpose resources and
subsumes any cluster of nodes, regardless of its compute
capacities or underlying system architecture. Additionally,
SCF considers the gradient of a compute hierarchy in
geographically distributed nodes.

We organize the SCF’s main principles and runtime
mechanisms into four key areas (Figure 3): 1) Reliability
and performance engineering 2) Serverless infrastructure
orchestration 3) FaaS Programming support 4) Serverless AI
and EI These areas represent general focal points of SCF.
More concretely, SCF aims to provide comprehensive support
to foster reliability and performance engineering by delivering
suitable runtime mechanisms, which enable elastic computing
and optimal scheduling of functions in the Edge-Cloud
continuum, while explicitly considering user-defined SLOs.
Further, SCF provides support for serverless infrastructure
orchestration by introducing novel design principles for
intelligent and autonomous infrastructure management, as well
as developing next-generation function isolation techniques,
which are specifically tailored to serverless paradigm. The
SCF also offers FaaS programming support for developing and
executing serverless functions in the Edge-Cloud continuum.
Most notably, we define concrete FaaS programming models
and data/request routing runtime mechanisms. Finally, SCF
puts specific focus on serverless AI and EI applications. Here,
we aim to support execution of large deep neural networks at
the edge, but also facilitate model selection and suitable data
flow topologies.

Before we discuss these runtime mechanisms and principles
in more detail in Section IV, we give an overview of SCF’s
high-level architecture.

A. Overview & Architecture

Figure 2, gives an overview of the high-level reference
architecture for Serverless Computing Fabric. For the sake of
simplicity, the architecture illustrates only the most important
components of the SCF and does not attempt to capture all the
components that are necessary to implement the SCF. The SCF
comprise three main layers: i) FaaS Runtime, ii) FaaS Platform
Layer and iii) Infrastructure Management and Orchestration
Layer. In the continuation we discuss the main role of each
of these layers.

The FaaS Runtime provides the support necessary to
execute and manage the SCF Functions. The Functions
Controller is responsible for managing the entire lifecycle
of each SCF function. This includes starting the functions,
scaling them to zero when there are no active requests,
but also managing persistent function invocation queues for
the dormant functions. Further, the Functions Controller is
responsible to elastically scale the SCF Functions as we
discuss in Section IV. The Request and data routers are
responsible to deliver function invocation requests to the SCF
Functions, but also to mediate the communication among the
functions. Among other things, it is the responsibility of the
request and data routers to determine whether a message
should be delivered to a local or a remote SCF Function and
to deliver such message by utilizing the lower-level layers.
Finally, the FaaS Runtime needs to facilitate communication
between the SCF Functions and the external services and
capabilities. To this end, it defines two special interfaces:
Support services access layer and Host capabilities access
layer. The Host capabilities access layer exposes the necessary
low-level capabilities to the SCF Functions. For example,
such capabilities include file system or networking access.
This layer is necessary since the SCF Functions need to be
executed in strict isolation from each other, but also from the
underlying host, for obvious security and performance reasons.
Moreover, the Host capabilities access layer represents a
single point of integration for the specialized hardware such
as AI inference accelerators and low-level libraries such as
TensorflowLite, which need to execute natively. The Support
service access layer provides access to a variety of high-level
services provided by the FaaS Platform Layer.

The FaaS Platform Layer provides core services, which
underpin the FaaS Runtime. These services are generally
grouped into two main components: the Support Serverless
Functions & Services and Core FaaS Platform Runtime
Mechanisms . We mentioned that the Support service access
layer provides access to a variety of high-level services. These
services are provided by the Support Serverless Functions
& Services component. Examples of such services include
serverless and edge-native Object store, Caching services,
Key/Value stores and so forth. It is worth mentioning that all
such services create one logical component within the SCF,
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Fig. 2: Serverless Computing Fabric Reference Architecture

but in reality they are typically stand-alone services, which
are part of the larger serverless Edge-Cloud ecosystem. The
SCF requires that all such services are built as edge-native
and based on serverless (FaaS) paradigm. This is one of the
key precondition to enable true serverless application and
systems (see Section II). The Core FaaS Platform Runtime
Mechanisms implement main concepts and techniques of
the SCF. In Figure 2, we only show the most important
components, which comprise the SCF’s core FaaS platform
and include: Communication & Data Plane, Elasticity Control
Plane, Software-defined Resource Plane and Universal EI &
AI Plane. These mechanisms are described in more detail in
Section IV.

The Infrastructure Management and Orchestration Layer
is responsible for managing the Edge-Cloud infrastructure
resources. Specifically, the Workload Isolation Manager is
responsible for isolating and orchestrating workloads which
wrap the SCF Functions. The Workload Isolation Manager

guarantees that different instances of the function runtime
are sandboxed and isolated from each other, but also that
the functions are isolated from the underlying hosts. To this
end, the Workload Isolation Manager offers a novel Edge-
native function isolation approach (see Section IV). It utilizes
well-established solutions such as container runtimes and
WebAssembly (WASM) for partitioning host’s resources and
limiting their usage. Finally, it offers support for fine-grained
usage billing, based on used CPU cycles for each function
execution. The Cluster & Host Management component is
in charge of the deep infrastructure, i.e., it manages host
nodes, which comprise the resource clusters. In the reference
architecture of the SCF, we do not make any particular
assumptions regarding this component. Instead, the SCF relies
on the existing cluster management support and off-the-shelf
solutions such as K3S or KubeEdge.
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IV. DESIGN PRINCIPLES & MAIN ENABLERS OF
SERVERLESS COMPUTING FABRIC

In the following, we introduce key design principles
and core enabling runtime mechanisms of SCF (Figure 3).
The presented mechanisms and principles are not meant to
represent and exhaustive list, but rather aim to serve as
an outline of our research road map towards the uniform
Serverless Computing Fabric for Edge-Cloud continuum.

A. Elastic Computing for FaaS at Edge

Cloud-native serverless platforms rely on commodity
infrastructure, small footprint, and short execution duration,
combined with statistical multiplexing of a large number of
heterogeneous functions over time. Elasticity at the Edge
implies many challenges which are not present in the
Cloud. These are caused mostly by different nature of the
underlying infrastructure (scale, geographical dispersion, etc.),
the topology of network connectivity and locality-awareness.

To enable the elasticity of the serverless computing fabric,
we envision several disruptive changes in the contemporary
perspective on elasticity. This includes both the edge-native
approaches where the focus mainly lies on task-specific
offloading to the cloud, as well as cloud-native approaches,
which to date remain fairly limited. The latter are primarily
based on a notion of autoscaling groups/sets of resources
where a user specifies desired cardinality. Main requirements
of elastic SCF include:

• Support for synchronizing elastic scaling actions
across multiple decentralized serverless functions, e.g.,
serverless workflows and defining consistent and
congruent scaling strategies.

• Facilitating multidimensional elasticity paradigm, which
makes it possible to go beyond basic resource elasticity
and address other elasticity dimensions, which include
cost and quality, but also energy efficiency and carbon
emission.

• Enabling rapid and uniform scaling of serverless
functions across the entire Edge-Cloud continuum, by
pushing the support for autonomous decision making
down to a node level and facilitating distributed
consensus.

To shift from current task-specific computational offloading
to decentralized, consensus-based and multidimensional
elasticity, SCF needs to provide novel coordination, control,
and orchestration approaches that enable Edge-Cloud systems
to adapt dynamically to varying load patterns and disruptive
behavior in a dependable manner. Finally, a level of
intelligence needs to be embedded into the SCF, which would
mitigate the complexities of the mundane and error-prone
tasks, which are typically required in current orchestration and
coordination approaches for elasticity.

B. Intelligent & Autonomous Infrastructure Management

The Serverless Computing Fabric aims to build on top of the
existing infrastructure virtualization management approaches
(container runtimes, VMMs etc.) and cluster management

(K3S, KubeEdge, OpenYurt, etc.) solutions. We intend to
develop novel mechanisms for intelligent and autonomous
management of the Edge-Cloud infrastructure at scale.
Moreover, SCF also ties into the existing orchestration
solutions, extending them with the necessary mechanisms. Due
to dynamicity, heterogeneity, geographical distribution and
the sheer scale of the Edge infrastructure, traditional human-
and policy-driven infrastructure management and provisioning
approaches (e.g., SSH-ing into Edge nodes) are hardly feasible
for successful operation of the serverless fabric in Edge-Cloud
continuum. Main requirements for a successful operation of
SCF include:

• Automated provisioning lifecycle, together with no-code
provisioning support based on off-the-shelf infrastructure
components. This is a key precondition for meeting the
zero operations, which is one of the main promises of
serverless computing.

• Providing a high degree of autonomy to both Edge and
Cloud nodes, be it physical devices or VMs, to be able to
scale the provisioning processes, but also to reach optimal
local decisions, e.g., with auction-based scheduling [6].

• Facilitating complete operations lifecycle with suitable
AI models, which can guarantee making rapid and
universally optimal resource provisioning decisions.

To make the necessary shift from traditional policy-
driven operations to a fully automated, autonomous and
intelligence driven operation of SCF, we need to rethink
the management of the high-level infrastructure components
such as containers, which underpin execution of serverless
functions, but also provide mechanisms for managing deep
infrastructure nodes (physical or virtual). Such mechanisms
must be specifically tailored for the Edge-Cloud continuum.
The SCF aims to develop suitable resource abstraction
mechanisms, which represent both infrastructure nodes and
higher-level infrastructure components in a uniform manner
and expose them as software-defined resource units via well-
defined APIs. Moreover, we advocate development of true
AIOps based orchestration and coordination solutions for
intelligent infrastructure provisioning across the entire Edge-
Cloud resource pool. This will ultimately result in refactoring
the Edge-Cloud infrastructure into autonomous and highly
customizable resource components capable to cater to the
diverse needs of serverless functions.

C. Edge-native Function Isolation Techniques
The ability to run FaaS functions in computational isolation

is the key assumption of serverless computing. Computational
isolation has multiple facets which typically include:

• Resource isolation, meaning any resource available to a
function, such as memory or CPU can be controlled and
it can be limited what such functions can access during
their runtime.

• Performance isolation between functions, meaning that
each function can assume having consistent and
predictable performance delivered by the underlying
infrastructure, regardless of its placement.
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Fig. 3: Overview of Serverless Computing Fabric Design Principles and Runtime Mechanisms

• Software fault isolation [43], [28] sometimes referred to
as “sandboxing”, means that a function is isolated form
other functions in terms of exploitable bugs, malicious
code, and any other software faults, which can lead to a
compromised security of that function.

At the same time, computational isolation can take
many forms. Well known forms include virtualization (VMs
and recently Micro VMs) [1], containerization (processes,
containers, pods and recently distroless and from scratch
containers), microkernels and isolates [3]. Most of these
approaches successfully deliver only the resource isolation.
While the VM-based virtualization does address multiple
facets of the computational isolation, due to its significant
resource overhead it is practically prohibitively expensive for
isolating functions at resource-constrained Edge.

To provide adequate support for the multi-faceted
computational isolation, SCF aims to develop a novel function
isolation model, which is specifically-tailored to account
for the properties of Edge-Cloud continuum. Among other
things the SCF FaaS isolation model has to guarantee
strong resource isolation between functions, going beyond
the traditional resources such as memory and CPU to also
account for the attached resources such as AI accelerators,
sensors and actuators. Further, it has to provide a sandboxed
environment for the functions, so that they cannot interfere
with the underlying host and its resources such as file system

and network access. Finally, the SCF FaaS isolation model
has to facilitate native execution of specific AI libraries,
which require native-execution due to their performance
requirements.

One of the promising approaches for edge-native function
isolation is WebAssembly. It offers several features, which
are particularly well suited for addressing serverless function
isolation in Edge-Cloud continuum. For example, linear
memory combined with control flow integrity guarantees
much safer code execution compared to traditional container-
based isolation. Despite receiving a lot of attention
recently, WebAssembly alone cannot satisfy all the isolation
requirements as described above. Therefore, SCF intends
to build on top of WebAssembly and extend it in several
directions, which include: 1) The SCF aims to provide a
FaaS runtime that includes capabilities, which are specifically-
designed to enable serverless execution of AI workloads in
Edge-Cloud continuum. For example, supporting access to
GPUs or specialized AI inference accelerators. 2) Integrating
the SCF FaaS runtime with deep infrastructure mechanisms.
3) Making the serverless functions first-class citizens at the
runtime level, in such a manner that the FaaS runtime has
an explicit awareness of the running serverless functions and
their (non-)functional requirements. 4) Making the SCF FaaS
runtime context- and infrastructure-aware, so that is can adapt
to the dynamic nature and frequent changes in the underlying
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infrastructure, providing more consistent experience to the
serverless functions.

D. Scheduling & Placement in FaaS Platforms

The short lifetime of serverless functions compared to
traditional tasks leads to a significant increase in instances
that need to scheduled. Such a large number of FaaS tasks
paired with the massive number of nodes in the Edge-Cloud
continuum results in a scheduling load that commonly used
monolithic or shared state schedulers are not designed to
handle [38]. Even multi-level schedulers, such as Mesos [17]
and YARN [42], often have a centralized component that
might become a bottleneck in the Edge-Cloud continuum.
Additionally, among other things, a high number of scheduling
requests implies that each such request must be processed with
a low end-to-end latency to ensure that the scheduling queue
does not overflow. Other common issues in the placement of
FaaS tasks, which can heavily influence the performance of
functions and which are exacerbated by an Edge environment,
are accounting for the distance between a function’s compute
node and its data, as well as, dependencies among functions
that are executed in succession.

To enable efficient scheduling of FaaS tasks in the
Edge-Cloud continuum and guarantee the desired execution
performance of the scheduled tasks, the requirements for the
SCF scheduler include:

• Leverage a distributed scheduling approach to distribute
the high scheduling workload among a variable number
of scheduler instances. This entails finding suitable
mechanisms for scheduler state synchronization and
avoidance of scheduling decision collisions (i.e., when
two schedulers try to claim the same resource).

• Treat proximity to the data as a first-class citizen
scheduling requirement, similar to CPU and memory
resource requirements. This will allow fast data flows to
and from the FaaS functions.

• Consider dependencies among functions that are part of a
single workflow and schedule their instances in proximity
to each other.

• Leverage network QoS requirements defined for a
function’s data and/or workflow dependencies to further
optimize the placement. Such network QoS requirements
may be explicitly defined or derived from data proximity
requirements and workflow dependencies.

• Support context-aware constraints to take advantage of
the heterogeneity of the Edge environment, such as geo-
location, battery level, and device movement.

While the proximity to data and to other function instances
from the same workflow may be treated as hard or soft
constraints during scheduling, they present important aspects,
which also call for appropriate abstractions, such as service
graphs that extend currently available function composition
graphs, to allow users to model these dependencies, such
that they can be leveraged by the scheduler. To realize the
scheduler for SCF we will build upon our existing SLO-aware
scheduler [31] and redesign it to leverage a distributed, highly

scalable architecture, whose aim will be to combine a node
sampling approach, like the one found, e.g., in Sparrow [27],
with an auctioning-based approach, inspired by approaches
like AuctionWhisk [6]. Furthermore, we aim to introduce
additional context-aware and FaaS-specific constraints, like the
ones discussed above.

E. Management of SLOs

While SLOs are heavily used to guide the elasticity of
traditional Cloud applications, it is challenging to enforce
SLOs on FaaS tasks, due to their short lifetime. Serverless
databases, which have a longer lifespan, may benefit from
SLOs commonly found in Cloud computing, such as those
realized by the Polaris project [30], [29]. However, for short-
lived serverless functions it is hard or even impossible to adjust
the resources or configuration parameters during the runtime
of an existing function instance.

Thus, SLO management for FaaS needs to take an
alternative approach that relies on insights gained from
previous function executions and apply them when creating
new function instances. Based on this observation we derive
the following major requirements for SLOs in the SCF:

• Monitor the execution of function instances to determine
their SLO-compliance, categorized by the function’s
input parameters. Based on these observations, the SCF
can infer configurations that will yield the desired
performance for a given set of input parameters.

• Enforce the SLOs by applying the previously gained
knowledge on the instantiation of new functions.

• Leverage network QoS SLOs defined for a function
(either explicitly or implicitly through workflow
dependencies and input data requirements) to optimize
its placement in the Edge-Cloud continuum to ensure
that performance SLOs are met.

While the enforcement of network QoS SLOs needs to
be tackled by the scheduler [31], the enforcement of almost
all other SLOs will occur at the creation of new function
instances. This entails a deep integration of SLOs into the
orchestration layer of SCF and will benefit heavily from the
use of AI models to predict the performance of a function,
based on its input parameters. The monitoring data gained
from previous executions can be used for profiling the function
and create an accurate model for its performance. When a
new instance of a function is created, the SCF orchestration
layer will look up the most performant configuration, based
on the current input parameters and use this configuration to
instantiate the function.

F. FaaS Programming Models

The prevalent programming model for serverless functions
is event-driven. Functions receive an input and return an
output based on triggers, while the underlying infrastructure
is abstracted away from the developers [23]. Current FaaS
offerings support a variety of triggers, including HTTP
requests, queues, file & database changes [37]. This limited
expressiveness significantly restricts function developers [4].
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The SCF is characterized not only by a heterogeneous
infrastructure, but also by heterogeneous applications that
require more sophisticated programming models than the
simple event-driven model that is currently employed. The
SCF decides to trade some transparency regarding function
management and execution, in favor of optimally managing
deployments to satisfy user requirements and SLOs.

We propose balancing the responsibilities and concerns
between developers and the underlying runtime. Specifically,
an extended programming model can expose specific tools
to the developers to enable them to add additional context
to the functions. The SCF can use this context to efficiently
manage deployments optimally while exposing infrastructure
concerns in a minimally invasive way to developers. In our
vision, context can act as requirements and fundamentally
support runtime mechanisms to manage function deployments.
Specifically the following requirements are crucial for
an optimal deployment: cost efficiency, energy efficiency,
latency sensitivity, privacy concerns and location requirements.
Developers can specify which requirements are important for
their functions and the SCF can optimize toward them. The
SCF requires intelligent and capable runtime mechanisms to
monitor and enforce these requirements. Monitoring the SCF is
challenging due to the dynamic nature of the infrastructure and
connections. Reliable middleware components (i.e., message
brokers) are not only important for request routing but also
to ensure that runtime mechanisms do not act on faulty
or missing data. The SCF also requires intelligent runtime
mechanisms to enforce these requirements. For example, an
optimization approach can use monitoring data to schedule
applications on nodes with the lowest energy consumption and
close to the users. Additionally, pro-active scaling approaches
can predict locations in which instances are needed in the
near future to avoid cold startups and minimize latency.
This approach violates the spirit of Serverless Computing to
hide all infrastructure details. Therefore programming model
extensions must be careful and balance between exposing and
hiding details from developers.

Moreover, stateful applications play an essential role in
Edge-Cloud continuum and need to be explicitly supported.
Stateful serverless approaches [7] have shown that the actor
pattern is a suitable abstraction [8]. The SCF should offer
methods to make the distinction and offer essential features
(i.e., checkpoints and failure recovery).

Further, exploiting ideas of the Functional Programming
(FP) paradigm can benefit developers and platform providers
alike [19]. The following features of FP can benefit serverless
development and tackle many challenges around reliability and
development. First, FP languages offer different composing
functions that can be used to generate complex workflows
and abstract infrastructural concerns from the developer (i.e.,
the actual function composition implementation). Second, FP
heavily relies on types and functions and treats them as first-
class citizens. In our vision, we want to push forward a strong
type system that makes FP programs safe and reliable. Types
describe functions and can test the compatibility of function

compositions. Third, concurrency, transaction management,
failure recovery, and preemptive termination pose challenges
in terms of reliability and development and FP inspired
approaches can significantly push toward a development
experience that makes aware of these issues and offers
integrated solutions [19]. FP constructs can help wrap these
cross-cutting concerns around functions without taking away
the freedom of developers to solve these issues. Still, they also
can be done without developer intervention.

G. Data & Request Routing Mechanisms

Interaction patterns of serverless Edge-Cloud applications
are manifold. For example, human clients may sporadically
access serverless applications (e.g., ordering a taxi) or
continuously send requests (e.g., mobile augmented reality) to
the platform over ingress controllers. IoT sensors periodically
send heterogeneous data over topic-based message brokers.
The requirements for implementing these routing mechanisms
are manifold: 1) application developers need mechanisms
to specify complex workflows (i.e., function compositions),
2) the platforms need mechanisms for autonomously managing
routing components, and 3) reliable service meshes are crucial
for providing suitable routing mechanisms.

Current FaaS platforms (e.g., Amazon, Google, IBM
OpenWhisk) offer tools to compose workflows and related
programming models (i.e., dataflows [13]) are based on the
composition of multiple applications and form a directed
acyclic graph (DAG). DAGs enable the SCF to reason about
the data flow and routing. DAGs can give insight into
the location and network requirements of applications can
be analysed for dependencies. Specifically, the structure of
DAGs can be analysed towards benefits of co-locating certain
applications or avoiding multi-tenant situations at all cost due
to competing resource requirements. These requirements can
aid the routing of data and requests and give the SCF’s runtime
mechanism the necessary context to meet expectations.

To guarantee the aforementioned requirements, the SCF
has to autonomously adapt routing components, such as load
balancers and message brokers. As edge-cloud applications
will likely generate an unprecedented amount of data, these
components not only serve to satisfy customers but also
prevent the congestion of metropolitan networks [36].

Serverless functions are most often short-running tasks and
are scaled out and in based on demand. Therefore, the platform
has to offer mechanisms to automatically adapt routing
components based on the availability of function instances.
Reliable routing becomes even more critical when platforms
usually scale to zero, meaning that no function instances are
running, making a reliable intermediate persistence necessary
to route requests successfully. While these approaches are
already established in cloud-centric systems, the Edge-
Cloud continuum poses new challenges that have yet to
be solved [39]. Based on the requirements above, the SFC
requires a sophisticated network mesh that consists of routing
components (i.e., message brokers, load balancers, and API
gateways), is capable of dynamically managing them (i.e.,
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spawning more brokers in a region with a high number of
clients), offers methods to understand developer requirements,
and is built on reliable and robust engines that can handle the
dynamic environment of Edge-Cloud systems.

H. Model Selection and Data Flow Topology

In addition to packaging and deploying the core business
logic as functions, intelligent applications which rely on tasks
such as voice recognition or object detection must select
appropriate machine learning models. A selection process is
non-trivial since models can perform the same tasks while
varying in size, inference latency, capacity, and hardware
optimization. Rather than forcing machine learning engineers
to search for the appropriate model from an exponential search
space, model selection automates this process.

Model selection has seen considerable research in cloud
computing, where state-of-the-art systems abstract the entire
selection process, allowing clients to specify AI tasks coupled
to desired SLOs [34]. However, model selection for the
edge is distinct from the cloud and substantially more
challenging for two reasons. First, the economies of scale
incline cloud providers to specialize in a specific subset of
chip architectures. In contrast, our vision of an SCF needs
to integrate the entire spectrum of available AI accelerators.
Moreover, even when considering devices with the same
chip architecture, profiling models for latency and energy
consumption is less straightforward as it depends on a device’s
available resources. Second, a model’s input modality impacts
a scheduler’s strategy to uphold SLOs where the correct data
flow topology and model placement is essential for modalities
that require a significant amount of bandwidth. For example, to
comply with latency-related SLOs, sending a visual feed over
the network requires more bandwidth than textual input, giving
visual models more priority to the scarce resources close to
the source.

I. Integration of Large Deep Neural Networks

Deep Neural Network (DNN) models which can reliably
execute inference tasks incur high resource consumption
on most available hardware. Accordingly, academia and
industry dedicate much attention to conceiving solutions
to accommodate local inference tasks in constrained
environments. They range from devising novel compact
architectures [35] to altering existing architectures via
quantization, pruning, or Knowledge Distillation [11]. An
inherent shared trait of all such approaches is their
performance and model capacity trade-offs. Alternatively,
mobile applications can offload the inference tasks to a
cloud server where we assume unlimited resources capable
of fast inference regardless of load. Here, the bottleneck is
transferring the input data to a remote server. Especially for
visual tasks, there remains one obvious caveat. Continuous
high-dimensional data streams must compete for limited
bandwidth, which can incur unacceptable end-to-end latency
caused by network congestion. More recently, Split Computing
has emerged as a paradigm and middle ground between

Fig. 4: Split Computing Concept

offloading the task to a powerful remote model and onloading
it to a weaker embedded device [25]. As illustrated in Figure 4,
the idea is to split a model into a small local head and a
large remote tail. The head performs light feature extraction
before sending the intermediate results to the remote tail
model. Note that the head is deployed on a constrained end
device, i.e., it can only contain a limited number of layers,
which must downsample the original input such that the
intermediate results are significantly smaller than the initial
input. Hence, finding the right balance is challenging because
the combined time for executing the head model, transferring
the intermediate results, and executing the tail model must
be shorter than offloading and executing the input task at the
unmodified monolithic model.

To successfully accommodate demanding AI applications
in our SCF and to fully exploit the available but distributed
resources, we plan on a serverless abstraction as future
work [14]. However, existing approaches do not meet
the requirements to enable split computing for serverless
applications. Specifically, we require a runtime that can
dynamically decide the offload point for each input and
coarse-grained layer. Additionally, the scheduler needs to be
lightweight enough such that the dynamic split decision does
not outweigh the benefit of a joint on- and offload execution.
To this end, we build a runtime system for dynamic split points
and conceive a programming model that allows clients to
organise DNNs into coarse-grained blocks so that a scheduler
can deploy the functions with all or only a subset of the blocks.
Then, the input is processed by a series of recursive function
calls, i.e. each call executes one block taking the result of the
previous block as its input.

The advantage of such an abstraction is twofold. First,
we can decouple the decision-making process for onloading,
offloading, and model splitting from the client with a
background runtime system. Second, such an abstraction
allows us to define model execution at a layer level, i.e., each
layer is a possible split point enabling a scheduler to decide
when to offload dynamically without the constraints of a single
static split point.

V. RELATED WORK

The related work is split into two categories. First, we
compare our vision with current serverless edge platforms
and highlight missing features and differences to our vision.
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Afterward, we discuss works that give an overview of future
Serverless Edge platforms and general issues.

Kjorveziroski et al. [22] present a survey of Serverless Edge
platforms with a focus on IoT. The systematic comparison of
existing approaches focuses on implementations, efficiency,
scheduling, benchmarks, security aspects, and source code
availability. Most of the approaches focus only on one or few
aspects but no surveyed work fulfills all categories. Further,
the survey has shown that Serverless Edge platforms are
not limited to a specific compute environment (i.e., Edge
Computing) but try to offer versatile products suiting the Edge-
Cloud continuum. Nevertheless, first commercial attempts are
limited to a specific environment. Ioini et al. [18] also perform
a structured survey on Serverless Edge platforms. They focus
on comparing existing commercial and open source platforms
while looking into categories such as high availability,
portability, programming language support, investment cost,
and AI support. The survey leads them to identify issues
surrounding vendor lock-in, lack of a decision framework
when to use serverless and lack of best practices, patterns and
anti patterns. Our work tackles some of those issues and gives
guidelines for programming models and SLO identification
while highlighting open issues for best practices (i.e., AI
deployment). Fortier et al. [13] present Dyninka, a platform
that combines FaaS and distributed dataflow applications.
Their approach explores the possibility of combining dataflow
programming and Serverless Computing to create a novel
platform with an emphasis on developing applications. The
system uses container-based virtualization and is integrated
into Kubernetes and uses multitier programming to let
developers specify interactions between individual components
(i.e., functions). Other works have investigated and proposed
solutions with preliminary results [9], without dedicated AI
support or an extended programming model [40], [10].

Xie et al. [45] discuss challenges and present design
principles on how Serverless Computing can enable Edge
Computing. The authors present a systematic overview
of Serverless Edge Computing networks and propose an
architecture. The architecture is split into multiple layers and
the authors describe in detail the components and interactions.
In contrast to them, we propose mechanisms for SLOs, an
extended programming model, and key challenges for Edge
Intelligence. Aslanpour et al. [2] present a high-level view on
Serverless Edge Computing and highlight opportunities (i.e.,
pay-per-use) and open issues (i.e., cold starts) surrounding
Serverless Edge Computing. Rausch et al. [32] present a
serverless platform with a focus on Edge Intelligence. They
discuss details of a possible programming model for Edge
Intelligence and outline how current cloud-centric platforms
have to adapt to the Edge-Cloud continuum based on use case
examples. Our work is complementary to these papers and
we extend the discussion and present new mechanisms and
challenges for the SCF.

VI. CONCLUSION

We introduced Serverless Computing Fabric (SCF), as
a novel software-defined, intelligence-driven, and Internet-
centric solution that can successfully address the challenges
of serverless applications in the Edge-Cloud continuum. We
showed how the SCF represents a paradigm shift from
traditional services and platforms computing to a fabric-
centric computing where digital resources, infrastructures,
and systems become commodities, which permeate the entire
computational and data Edge-Cloud continuum. We presented
a high-level reference architecture of the SCF and discussed its
main components and core services. Finally, we introduce key
design principles and core enabling runtime mechanisms of
SCF. These principles and mechanisms are intended to serve
as an outline of our research road map towards the uniform
Serverless Computing Fabric for Edge-Cloud continuum.
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