
EMMA: Distributed QoS-Aware MQTT Middleware
for Edge Computing Applications

Thomas Rausch, Stefan Nastic, Schahram Dustdar

Distributed Systems Group

TU Wien, Vienna, Austria

{rausch, nastic, dustdar}@dsg.tuwien.ac.at

Abstract—Publish–subscribe middleware is a popular tech-
nology for facilitating device-to-device communication in large-
scale distributed Internet of Things (IoT) scenarios. However,
the stringent quality of service (QoS) requirements imposed by
many applications cannot be met by cloud-based solutions alone.
Edge computing is considered a key enabler for such applications.
Client mobility and dynamic resource availability are prominent
challenges in edge computing architectures. In this paper, we
present EMMA, an edge-enabled publish–subscribe middleware
that addresses these challenges. EMMA continuously monitors
network QoS and orchestrates a network of MQTT protocol
brokers. It transparently migrates MQTT clients to brokers in
close proximity to optimize QoS. Experiments in a real-world
testbed show that EMMA can significantly reduce end-to-end
latencies that incur from network link usage, even in the face of
client mobility and unpredictable resource availability.

I. INTRODUCTION

Many modern Internet of Things (IoT) scenarios have

stringent quality of service (QoS) requirements [1]. Typically,

device communication in such environments is facilitated by

cloud-based message-oriented middleware (MOM) based on

the publish–subscribe model [2]. Edge computing is con-

sidered a key enabler for scenarios where such centralized

cloud-based platforms are impractical [3], [4]. Edge computing

aims to leverage the ever increasing amount of computational

resources at the edge of the network and move data processing

closer to where data are generated. To facilitate efficient

device communication, publish–subscribe MOM can adhere

to this principle. Instead of routing all messages to the cloud,

brokers can be deployed on edge resources to reduce end-to-

end latencies between devices in close proximity.

IoT and edge computing come with a set of challenges.

The network topology is highly dynamic and subject to high

churn. Clients as well as edge resources are mobile and

may unexpectedly leave or enter the system. The dispersion

of edge resources adds to the overall complexity of system

management mechanisms [5]. Although the Message Queue

Telemetry Transport (MQTT) protocol has proliferated as a

standard pub/sub platform for IoT applications [6], state-of-

the-art MOM solutions based on MQTT fall short of address-

ing these issues.

In this paper we propose EMMA, a distributed QoS-aware

MQTT middleware for edge computing. The contributions of

our system are (i) a continuous network-monitoring protocol

that allows proximity detection based on network latency, (ii) a

mechanism to orchestrate a network of distributed MQTT

client gateways and brokers, (iii) a network reconfiguration

scheme to optimize QoS during runtime based on node prox-

imity. In an empirical evaluation using a real-world testbed,

we show that EMMA can significantly reduce end-to-end

latencies caused by message routing, even in the face of

changing network topologies and client mobility.

II. MOTIVATION

We briefly summarize two scenarios that motivate the need

for edge computing middleware, one from the military domain

described by Lewis et al. [7], and another from the mobile

health (mHealth) domain described by Nastic et al. [8].

Tactical cloudlets: Mobile handheld devices are increas-

ingly used by soldiers, field personnel and first responders. In

tactical environments, such devices can help with tasks such

as language translation, face recognition, mission planning and

other on-premise decision making processes. In these tactical

environments, edge resources such as cloudlets can be hosted

on vehicles, drones, or other platforms in close proximity, and

may be added on demand [7].

Edge analytics for mHealth: In mass emergencies and

disasters, prompt paramedic attention is crucial to save peo-

ples’ lives. To guide and improve the decision making process

of paramedics, patients are equipped with a wearable sensor

that continuously reports vital parameters of the patient to

mobile devices carried by paramedics. For on-premise decision

making, data have to be processed locally in near real-time. On

metropolitan area level, processed health data are useful for

follow-up treatments in hospitals. For this type of analytics,

data have to be transferred to, e.g., a local cloudlet. Any further

long-term data processing, such as using Big Data techniques

for complex data analytics, will require the data to be stored

in a cloud storage system [8].

These scenarios demonstrate the need for edge computing

communication middleware that can provide low end-to-end

latencies between devices in close proximity, while still being

able to distribute messages to the Cloud or other geograph-

ically dispersed locations. Furthermore, the scenarios high-

light the characteristics and challenges of edge environments:

dynamic network topologies, client mobility and changing

resource availability.

191

2018 IEEE International Conference on Cloud Engineering

0-7695-6371-6/18/31.00 ©2018 IEEE
DOI 10.1109/IC2E.2018.00043

Several questions and problems arise when designing such a

middleware. (i) The ad-hoc distribution of brokers to resource

constrained devices requires dynamic and efficient manage-

ment of distributed subscription tables. (ii) Clients should

be unaware of the dynamic broker network and should be

transparently connected to brokers via gateways. (iii) To de-

termine proximity, the network QoS between nodes needs to be

monitored and reported efficiently. (iv) If proximity between

clients and brokers changes, client–broker connections have to

be reconfigured. (v) When brokers provide similar QoS to a set

of clients, load needs to be distributed among these brokers.

III. RELATED WORK

While publish–subscribe (pub/sub) is a well researched

topic [9], cloud computing, the IoT, and edge computing, have

introduced new challenges and opportunities. In particular,

research has shown that current protocols and solutions can not

adequately deal with the scalability and QoS requirements of

modern IoT scenarios [1]. Also, many pub/sub solutions rely

on their own protocols and models [10], [11], [12] that neglect

established standards for IoT applications such as MQTT.

QoS awareness in pub/sub overlay networks has been ad-

dressed in different works spanning the past two decades [13],

[14], [15]. Specifically, these approaches focus on techniques

for managing complex networks of brokers using contextual

QoS information, and efficient message routing within these

networks. Contributions include optimal path selection for

message routing based on QoS criteria and supporting mobility

by providing efficient on-line re-configuration of overlays.

Scalability of pub/sub middleware under fluctuating load

has primarily been addressed using cloud-based solutions.

Centralized systems such as Amazon IoT [2], or Dynamoth

[16] achieve scalability by providing load balancing in a broker

cluster, and elasticity mechanisms for adding and removing

broker nodes on demand. These cloud-based systems do

not consider proximity of clients or latency incurring from

link usage. Load balancing for edge computing is a fairly

unexplored topic, and has only recently gained attention in

the edge computing community [17].

Some open-source pub/sub brokers, such as JoramMQ [18],

Mosquitto1 and HiveMQ2, provide basic mechanisms for en-

abling edge computing applications. For example, Mosquitto

can be configured at deployment time to bridge topics, i.e.,

forward messages of a specific topic, to a centralized broker

[19]. However, these mechanisms are all static in nature and

do not address mobility or changing resource availability.

Few efforts have been made to engineer holistic solutions

for QoS aware pub/sub systems that address the challenges

of IoT and edge computing. An et al. [20] present PubSub-

Coord, a cloud-based coordination system for a distributed

broker network. The overlay layer is strictly structured into

edge brokers and routing brokers, coordinated via a layer of

ZooKeeper nodes. In a non-peer-reviewed work, Abdelwahab

and Hamdaoui present FogMQ [21] which supports migration

of broker clones at runtime to the edge, thereby enabling low-

latency data analytics.

IV. SYSTEM DESIGN

EMMA is built around MQTT, a pub/sub protocol that has

gained newly found attention in the advent of IoT [6], [1].

Due to its lightweight design and minimal network overhead,

MQTT is especially well suited for low-bandwidth and low-

power environments [6]. We designed EMMA to act as a

transparently distributed MQTT broker, enabling existing IoT

software that uses MQTT to be seamlessly used. For this first

prototype, we considered only part of the MQTT protocol.

A. Architecture

EMMA consists of four core components: gateways, bro-

kers, the controller, and the network monitoring protocol.

Figure 1 shows the general architecture of an EMMA deploy-

ment. MQTT clients connect to gateways which act as reverse

proxies for dynamically connecting clients to brokers. Brokers

implement the MQTT server protocol and our dynamic topic

bridging approach. The controller acts as a registry, monitoring

hub and system orchestrator. Next, we describe the role of each

component.

Client
GW

c

GW

c

Broker

Broker

Device

M
on

ito
rin

g
pr

ot
oc

ol

Controller

Bridging
Tables

Gateway

Bridging
Table

Recon gura-
tion Engine

REST Endpoints

Network
monitor

Bu er out

Bu er in

MQTT
Server

Fig. 1: Overview of the EMMA architecture

a) Gateways: are a key component in enabling mobility

of clients and brokers by allowing reconfiguration of con-

nections. Their purpose is to hide EMMA from the actual

clients by tunneling MQTT traffic and providing a buffering

mechanism during a reconnection process to a different broker.

Gateways can be deployed on different physical locations than

the clients themselves, and can also handle multiple client

connections. They are lightweight, have no code dependencies,

and have very little logic to them. A similar concept was

proposed by Luzuriaga et al. [22], where intermediary buffers

decouple message producers and MQTT publisher clients.

b) Brokers: implement the MQTT server protocol [23],

i.e., manage topic subscriptions and disseminate published

messages to subscribers. They also act as topic bridges to

forward messages to other brokers that have subscribers to

those topics. To that end, bridging tables are synchronized

between brokers via the controller. Bridging tables specify

which brokers have at least one subscriber to a specific topic.

192

c) Controller: The controller is the orchestration com-

ponent of the system where gateways and brokers register

when they enter or leave the network. It maintains the state of

the network as a graph data structure. Formally, the network

N = (B,C,E) is a bipartite graph containing broker nodes B,

client nodes C, and connections between clients and brokers

as edges E (which we call a link). In this context, a client

c represents a gateway. The reconfiguration engine of the

controller detects proximity between gateways and brokers

based on network latency and instructs gateways to reconnect

to different brokers to optimize QoS. Furthermore, it balances

load between brokers that provide similar QoS to clients.

d) Monitoring: The monitoring protocol is a lightweight

binary protocol to allow distributed monitoring of network

QoS. Each EMMA component implements the protocol. The

monitoring protocol is also used to instruct gateways to

reconnect to different brokers.

V. COORDINATION MECHANISMS

A. Quality of Service Monitoring Protocol

To reason about the network at runtime, we implement a

distributed asynchronous network monitoring protocol on top

of UDP. Messages of the protocol are encoded in a lightweight

binary format, summarized in table Table I.

The general process of the protocol is as follows. The

controller sends a QOSREQ packet containing an ID, and the

measurement target (a broker) to a gateway. The gateway then

sends 10 PINGREQ packets to the broker in an interval of 250

ms. Each PINGREQ packet contains an ID, which is returned

by the broker in a PINGRESP packet. The gateway records the

sent and received timestamps for each packet and sends back

the average latency as a QOSRESP packet to the controller.

Calculating and using other metrics such as jitter and packet

loss is part of our future work.

B. MQTT Broker and Gateway Network Orchestration

1) Dynamic Topic Bridging: Because we assume dynamic

availability of brokers and mobility of clients, we cannot rely

on static bridging configurations, e.g., like Mosquitto does

[19]. We therefore extend the standard MQTT protocol with

dynamic topic bridging. When a client publishes a message

into a given topic, brokers first broadcast the message to all

connected subscribers according to the MQTT protocol, and

then forward the message to other brokers that have at least

one subscriber to the respective topic. Brokers inform the

controller about changes of their local subscription tables when

TABLE I: Packets of the monitoring protocol

Name Description Size

QOSREQ Network QoS measurement request 13
QOSRESP Network QoS measurement response 9
PINGREQ Ping request 5
PINGRESP Ping response 5
RECONNREQ Request a gateway to reconnect to a broker 47
RECONNACK Gateway acknowledges the reconnect 47

:brokerA

:controller:gateway:client

CONNACK CONNACK

lookup

 result(brokerA)

store
packet

CONNECT

CONNECT

:b1::b2::gateway::controller

SUBSCRIBE
...

CONNECT

 DISCONNECT

replay
control
packets

TCP connect

TCP open

update
network

 RECONACK(b2)

RECONREQ(b2)

Fig. 2: Connection (left) and reconnection (right) procedures

necessary (e.g., if a client subscribes to a new topic), and the

controller propagates relevant changes to the other brokers.

2) Orchestrating Client Connections: Instead of connecting

to a broker directly, MQTT client traffic is tunneled through

a local gateway. When a client sends an MQTT CONNECT
packet to a gateway, the gateway initially queries the con-

troller for a broker to connect to. The gateway stores all

MQTT control packets sent by the client related to estab-

lishing a broker connection and subscriptions (CONNECT,

SUBSCRIBE, UNSUBSCRIBE). The controller may decide at

runtime to migrate the connected clients to a different broker.

To that end, the controller sends a RECONNREQ packet to

the gateway via the monitoring protocol containing the host

and port of the target broker. The gateway asynchronously

opens a connection to the new broker, disconnects from the

old broker once the new connection is established, informs

the controller by sending a RECONNACK packet, and then

places the stored control packets into the send buffer dequeue.

To avoid packet loss during reconnection of clients to new

brokers, a gateway maintains, for each client–broker tunnel,

two buffers that buffer incoming messages from the client and

broker respectively. Any messages sent from the client during

a reconnection process are buffered into a dequeue. Once the

connection to a new broker is established, the recorded MQTT

control packets are placed into the head of the dequeue, the

old connection is closed, and the buffer, which includes the

control packets, is flushed. Figure 2 shows sequence diagrams

of the connection and reconnection procedure.

C. Network Reconfiguration and QoS Optimization

The network is reconfigured by first examining the current

QoS of the network, selecting potential broker candidates for

each client in a way that will optimize QoS for those clients,

and then migrating clients to their designated brokers. The

reconfiguration engine of the controller is scheduled to run

at a fixed interval of 15 seconds. Figure 3 shows the state

of a network before and after a reconfiguration. Values of

links indicate the proximity (latency in milliseconds). Arrows

indicate message flow. Clients c1 and c2 are migrated from

broker b1 to b2. A topic bridge between the two brokers is

created automatically through the subsequent reconnection and

subscription procedures described earlier.

When brokers provide similar QoS to clients, it is im-

portant to (i) avoid migrating clients due to slight vari-

ability of latency, and (ii) balance load between those bro-

kers. To that end, we stratify brokers into latency groups,

193

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

Fig. 3: Network before and after reconfiguration

based on the premise that connecting to any of the bro-

kers in a group is acceptable in terms of QoS. We de-

fine the latency groups as millisecond-intervals I , and set I
= {[0, 2), [2, 5), [5, 10), [10, 20), [20, 50), [50, 100), [100, 200),
[200, 500), [500, 1000), [1000,)}. That means, for example, if

a broker b provides a client c a latency of 4, it would fall

into the interval I2 = [2, 5) and therefore into group 2. For

balancing load in a group we implemented a simple strategy

based on the amount of clients connected to a broker.

The basic algorithm for reconfiguring the network is out-

lined in Algorithm 1. The network N = (B,C,E) is a

bipartite graph of brokers B and clients C as described in

Section IV-A. To avoid migrations when no significant load

balancing would occur, we introduce the migration threshold

θ, which defines the minimum percentage of connections that

have to change within a group of candidate brokers in order

to trigger a reconnect. By default, we set θ = 0.1.

Algorithm 1 Network reconfiguration

In: Network N = (B,C,E)
In: Migration threshold θ

1: for all c ∈ C do
2: bc ← currentBroker(c)
3: B′

c ← brokersInLowestLatencyGroup(N , c)
4: b′c ← b ∈ B′

c s.t. connCnt(b) is minimal

5: if bc = b′c then
6: continue
7: end if
8: if bc ∈ B′

c then
9: δ = θ ·∑b∈B′

c
connCnt(b)

10: if connCnt(b′c) +δ ≥ connCnt(bc) then
11: continue
12: end if
13: end if

migrate(c, b′c)

14: end for

VI. EVALUATION & IMPLEMENTATION

To show the efficacy of our approach, we implement a

prototype of the EMMA system and evaluate it in a real-

world testbed. We run an experimental scenario that emulates

the scenarios described in Section II to show that the system

can (i) deal with clients and brokers unexpectedly entering and

leaving the network, (ii) dynamically bridge topics only when

required, (iii) reconfigure connections to optimize latency for

clients in close proximity, and (iv) balance load between

brokers that provide similar QoS to clients.

us-east eu-west

eu-central

BrokerGateway BrokerGateway

Controller

... ...

Gateway

Broker

98 ms 27 ms

85 ms

Fig. 4: Evaluation environment in AWS EC2

A. Prototype Implementation

We implement EMMA as a set of modular components

written in the Java programming language. To date, the code-

base comprises 217 classes and 10.3k effective LOC. The code

is open source and published in our code repositories3. For

distributing bridging tables we use Redis4 and its keyspace

notification feature to propagate updates only when necessary.

B. Experiment Setup

We now present the details of our evaluation environment,

the experimental scenario, and deployment details.

1) Testbed: Our evaluation environment consists of multi-

ple Amazon EC2 virtual machines that span three different

AWS data centers. Figure 4 illustrates the setup and shows

latencies between regions. Latencies within regions are in the

sub-millisecond range. We use the following EC2 instances

types for the components. The controller runs on a t2.large

(2 vCPUs, 4 GiB RAM) instance. For broker nodes, we use

t2.medium instances (2 vCPUs, 2 GiB RAM). Gateways and

clients share t2.micro instances (1 vCPUs, 1 GiB RAM).

2) Scenario: The experimental scenario emulates the real-

world edge computing scenarios presented in Section II. In

this particular experiment, we spawn client groups across two

regions. Each client group consists of 10 VMs, each hosting a

gateway, 1 subscriber and 7 publishers that exchange messages

in a topic named like the region they are deployed in, namely

eu-west and us-east. To show that the system can dynamically

create topic bridges when necessary, a publisher and subscriber

pair is deployed in each region that communicate in the topic

global. A single subscriber to this topic is also deployed

in eu-east where the initial broker and controller reside. To

demonstrate the orchestration mechanisms, we trigger the

following events manually at runtime:

1) Clients appear that communicate in topic global (one

publisher and subscriber in both us-east and eu-west. One

subscriber in eu-central)

2) Client group appears in the us-east region

3) Broker spawns in eu-west (1)

4) Client group appears in the eu-west region

194

5) Broker spawns in us-east

6) Broker spawns in eu-west (2)

7) Subscriber to topic global in eu-central disappears

8) Broker shuts down in us-east

3) Clients & Load Generation: For the purpose of generat-

ing load and recording message statistics, we developed a gen-

eral purpose framework for benchmarking publish–subscribe

systems which is also open source5. Messages generated by

the application contain a payload in the JSON format that has

a total of 118 bytes (including JSON overhead). They contain

a UUID, a timestamp the message was sent, and a dummy

payload with 14 bytes as placeholder for a sensor reading. We

configure each publisher to generate messages at a fixed rate

of 10 messages per second.

C. Experiment Results

Figure 5 shows the main results from our experiment.

Figure 5a shows the message throughput of the brokers

during their lifetime. The circles and dotted lines indicate the

events described previously. The x-axis indicates the time (in

minutes) of the experiment, each labeled tick is 60 seconds

apart. Figure 5b and Figure 5c show the average end-to-end

latency of messages in the respective topics, aggregated every

second over all subscribers of that topic.

1) Throughput & load balancing: Figure 5a shows how the

rebalancing mechanism and the dynamic bridging approaches

behave. At event 4, when the client group appears in eu-west,

the output rate shows that it takes two rebalancing iterations

to fully balance connections between the two active brokers.

Because messages are bridged between the two brokers, the

input rate does not change. However, as the output rate makes

apparent, the balancing can significantly reduce the strain of

multicast on a single broker. The input rate of the eu-central

broker after event 7 shows that, once there are no subscriptions

to a topic at a specific broker, the subscription tables are

propagated and messages are no longer bridged to that broker.

At event 8, when the broker in us-east shuts down, clients

previously connected to that broker are immediately migrated

to other available brokers. All three currently running brokers

are in the same latency group for the clients deployed in the

us-east region. As the output throughput graph shows, load is

balanced between the three brokers.

2) Topic latencies: Figure 5b shows how rebalancing and

migrations affect the end-to-end latencies between clients. In

particular, the graphs reveal the cost of migrating clients.

At event 3, when a new broker spawns and migration of

clients begins, the message latencies spike. This is the result

of a combination of the gateway buffering mechanism during

reconnect, and the Java warm-up phase of newly spawned

brokers. However, as the graph shows, the latency stabilizes

a few seconds after the migration is complete, and the load

is shared between the brokers eu-central and eu-west 1. The

second iteration has a less drastic effect.

At event 4, the graph for the eu-west topic shows that clients

in the region immediately connect to the broker closest to

them. Consequently, the load balancing engine moves some

71

2

3 4 5 6 8

(a) Broker message throughput

(b) Aggregated topic latencies

(c) Latencies during intra-region communication

Fig. 5: Experiment results

of the clients connected from us-east back to the eu-central

broker. In this case, it took two balancing iterations to fully

balance the connections.

At event 5, when the broker in us-east is spawned, all

clients in the region migrate to that broker. This includes the

publisher and subscriber in that region communicating via the

global topic, which is why the average latency also drops

dramatically. A major source of latency in this topic is the

round-trip time between the us-east region and the brokers in

eu regions. Once clients within the region communicate via a

195

Fig. 6: Average latency for global topic subscribers

local broker, only messages that have to be forwarded are sent

over the us–eu link. At event 8, when the broker in us-east

shuts down, latencies spike due to reconnection buffering, and

then stabilize at their previous levels.

Figure 5c shows the time window between event 5 and 8,

where both client groups have a broker in their respective

region. As the graphs show, the latencies average at around

3-5 ms. The variance in the eu-west topic shows how load bal-

ancing affects latencies for devices in close proximity. These

results also indicate that messages are bridged efficiently,

meaning that the system can provide low end-to-end latencies

for clients in close proximity, and forward messages to other

brokers that provide similar QoS with minimal overhead.

3) Global message dissemination: In each region, one

subscriber to the global topic is deployed. Figure 6 shows

the average end-to-end latency for each subscriber in the

respective region during the experiment. As the us-east graph

shows, messages sent from the us-east region have, at first,

the highest round trip time, causing the high fluctuation in

that region. At the later stages after event 5, where a broker is

present in each region, message latencies average at roughly

the average link latencies between clients and their local

brokers. Looking at the subscriber in eu-central, we also

observe that, even when topics are bridged from other regions,

the latencies do not significantly change. This shows that the

overhead of bridging messages to geographically dispersed

locations is minimal even under broker load.

4) Message loss: The gateway buffering approach avoids

message loss for publishers during a reconnection procedure.

However, messages published while subscribers are migrated

may not be delivered to these subscribers. Figure 7 shows the

total amount of undelivered messages in both client groups

at given points in time during the experiment. The boxes

show the distribution of undelivered messages across the 10

subscribers of the respective group. Boxes are drawn in points

in time where the amount of undelivered messages changed.

Each client group consists of 70 publishers that publish at

a frequency of 10 msg/s, totaling at 700 msg/s. In the us-

east topic, a total of 177,269 messages were published. As

the last box for the topic shows, subscribers experienced a

total message loss of about 765 messages, i.e., 0.43% per

subscriber. For the global topic, message loss was minimal.

Fig. 7: Message loss for clients in the respective regions

D. QoS Monitoring Network Usage

QoS monitoring comes at the cost of using the network’s

bandwidth. We present a sample calculation that shows that the

use grows linearly with the amount of brokers and clients in

the network. Measuring the QoS between two nodes involves

sending a total of 22 UDP packets. A UDP packet in IPv4

Ethernet has 48 bytes of overhead. Hence the UDP overhead

for each measurement totals at 1058 bytes. The request/re-

sponse packets sent between gateway and controller are 13

byte and 9 byte respectively. Then, 10 ping messages are sent

to the broker, and, ideally, 10 response messages are returned,

totaling 100 bytes. Including the UDP overhead, this means a

total of 1180 bytes per measurement.

Our prototype implements a fixed rate approach, where

QoS is measured every 15 seconds. In a network of 100

brokers, this would mean roughly 7.9 kB/s network usage for

a gateway. There is a lot of potential to optimizes these values,

e.g., by adapting the update measurement frequency based

on proximity. More inquiry on the requirements of network

balancing algorithms on monitoring protocols is needed.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented EMMA, a QoS aware MQTT

middleware for edge computing. EMMA is a step towards

a holistic message-oriented middleware for edge computing

applications that aim to satisfy the stringent QoS requirements

imposed by modern IoT scenarios. We have shown that

EMMA can provide low-latency communication for devices

in close proximity, while allowing message dissemination

to geographically dispersed locations at minimal overhead

costs. Our network reconfiguration mechanism enables client

mobility, dynamic broker provisioning, and broker load bal-

ancing. Gateways allow existing MQTT client infrastructure

to transparently connect to the system.

Future work includes a complete implementation of the

MQTT protocol, including its message reliability guarantees

(at least once, and exactly once), as well as automatic resource

discovery and elasticity control mechanisms for autonomous

broker deployment to the edge.

ACKNOWLEDGMENT

This work is partially supported by the Austrian Federal

Ministry of Science within the CPS/IoT Ecosystem project

and by TU Wien research funds.

196

REFERENCES

[1] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meet-
ing iot platform requirements with open pub/sub solutions,” Annals of
Telecommunications, vol. 72, no. 1-2, pp. 41–52, feb 2017.

[2] J. Barr, “Aws iot – cloud services for connected devices,” AWS
Blog, 2015. [Online]. Available: https://aws.amazon.com/blogs/aws/
aws-iot-cloud-services-for-connected-devices/

[3] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, Sep. 2015.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. June, pp. 30–39, Jan 2017.

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[7] G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in 2014 IEEE Military
Communications Conference. IEEE, oct 2014, pp. 1440–1446.

[8] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64–71, 2017.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, jun 2003.

[10] G. Siegemund, V. Turau, and K. Maâmra, “A self-stabilizing publish/sub-
scribe middleware for wireless sensor networks,” in 2015 International
Conference and Workshops on Networked Systems (NetSys), Mar 2015,
pp. 1–8.

[11] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide scale
publish–subscribe systems,” IEEE Communications Surveys Tutorials,
vol. 16, no. 3, pp. 1591–1616, 2014.

[12] V. Turau and G. Siegemund, “Scalable routing for topic-based publish/-
subscribe systems under fluctuations,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), June 2017, pp.
1608–1617.

[13] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event
routing in publish-subscribe systems,” in Fourth IEEE International
Symposium on Network Computing and Applications, jul 2005, pp. 101–
108.

[14] Y. Chen and K. Schwan, “Opportunistic overlays: Efficient con-
tent delivery in mobile ad hoc networks,” in Middleware 2005:

ACM/IFIP/USENIX 6th International Middleware Conference, Greno-
ble, France, November 28 - December 2, 2005. Proceedings. Springer
Berlin Heidelberg, 2005, pp. 354–374.

[15] M. Kim, K. Karenos, F. Ye, J. Reason, H. Lei, and K. Shagin, “Efficacy
of techniques for responsiveness in a wide-area publish/subscribe sys-
tem,” in Proceedings of the 11th International Middleware Conference
Industrial Track, ser. Middleware Industrial Track ’10. ACM, 2010,
pp. 40–45.

[16] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, jun 2015, pp. 486–496.

[17] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to qos-
based task distribution in edge computing networks for iot applications,”
in 2017 IEEE International Conference on Edge Computing (EDGE),
June 2017, pp. 32–39.

[18] ScalAgent, “Jorammq, a distributed mqtt broker for the internet of
things,” 2014.

[19] M. Garcia, “How to bridge mosquitto mqtt broker to
aws iot,” The Internet of Things on AWS – Official
Blog, 2016. [Online]. Available: https://aws.amazon.com/blogs/iot/
how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/

[20] K. An, S. Khare, A. Gokhale, and A. Hakiri, “An autonomous and
dynamic coordination and discovery service for wide-area peer-to-peer
publish/subscribe: Experience paper,” in Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, ser.
DEBS ’17. New York, NY, USA: ACM, 2017, pp. 239–248. [Online].
Available: http://doi.acm.org/10.1145/3093742.3093910

[21] S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker
system for enabling distributed, internet-scale iot applications over
heterogeneous cloud platforms,” CoRR, vol. abs/1610.0, 2016. [Online].
Available: http://arxiv.org/abs/1610.00620

[22] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and
P. Boronat, “Handling mobility in iot applications using the mqtt
protocol,” in 2015 Internet Technologies and Applications (ITA), Sep
2015, pp. 245–250.

[23] A. Banks and R. Gupta, “Mqtt version 3.1. 1,” OASIS standard, vol. 29,
2014.

NOTES

1https://mosquitto.org
2http://www.hivemq.com
3https://git.dsg.tuwien.ac.at/emma/emma
4https://redis.io
5https://git.dsg.tuwien.ac.at/emma/pubsub-benchmark

197

