
Author copy of paper published at 2023 IEEE International Conference on Cloud Engineering (IC2E)
©2023 IEEE. Official publication: https://doi.org/10.1109/IC2E59103.2023.00026

Vela: A 3-Phase Distributed Scheduler for the
Edge-Cloud Continuum

Thomas Pusztai
Distributed Systems Group, TU Wien

Vienna, Austria
t.pusztai@dsg.tuwien.ac.at

Stefan Nastic
Distributed Systems Group, TU Wien

Vienna, Austria
s.nastic@dsg.tuwien.ac.at

Philipp Raith
Distributed Systems Group, TU Wien

Vienna, Austria
p.raith@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria
dustdar@dsg.tuwien.ac.at

Deepak Vij
Futurewei Technologies, Inc.

Santa Clara, CA, USA
dvij sj12@yahoo.com

Ying Xiong
Futurewei Technologies, Inc.

Santa Clara, CA, USA
yingx@live.com

Abstract—The amalgamation of multiple Edge and Cloud clus-
ters into an Edge-Cloud continuum requires efficient scheduling
techniques to cope with high numbers of infrastructure nodes
and computing jobs. Since monolithic schedulers typically do not
scale well beyond a certain cluster size, distributed scheduling ap-
proaches are usually employed to address such scalability issues.
Distributed schedulers are often designed for Cloud environments
and lack support for the Edge. Conversely, many Edge schedulers
focus on single clusters and provide limited support to deal with
the scale of the Edge-Cloud continuum. In this paper, we present
the Vela Distributed Scheduler, a globally distributed scheduler,
which is specifically tailored for the Edge-Cloud continuum. The
main contributions of our work include: i) A novel, globally
distributed and orchestrator-independent scheduler with a 3-
phase scheduling workflow; ii) A two-level, informed sampling
mechanism, which reduces latency for globally distributed sam-
pling and leverages job requirements to produce high quality
node samples; And iii) a MultiBind mechanism that significantly
reduces job evictions and rescheduling due to scheduling conflicts.
We implement Vela on top of Kubernetes and evaluate it in a
realistic large-scale setup using multiple interconnected, globally
distributed, and production-ready MicroK8s clusters with up
to 20,000 total simulated nodes. Our results show that Vela’s
performance scales linearly with infrastructure size and that it
reduces scheduling conflicts by a factor of 10.

Index Terms—distributed scheduling, edge computing, edge-
cloud continuum

I. INTRODUCTION

When multiple Edge and Cloud clusters meld together they
form what is called the Edge-Cloud continuum. Executing the
microservices of an application on the right nodes allows the
application to take advantage of the best of both worlds, i.e.,
the low latency, proximity to the users, and attached Internet
of Things (IoT) devices of the Edge and the powerful compute
resources of the Cloud. Placing a workload in the Edge-
Cloud continuum, which can often span tens to hundreds of

This work is supported by Futurewei’s Cloud Lab. as part of the overall
open source initiative.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871403.

TABLE I: Scheduler Architectures Comparison

Type State per
Instance

State
Synchronization

Conflicts
Handling Limitations

Monolithic
e.g., [2]–[4] Entire cluster

Not needed,
because single
instance only

Avoided by
monolithic state

Limited
infrastructure size

Two-level
e.g., [5]–[7]

Statically or
dynamically
partitioned
by 1st level

Not needed,
because state
is partitioned

Avoided
by partitioning

Local optima and
potentially limited

infrastructure size if
1st level is monolithic

Shared State
e.g., [8]–[11] Entire cluster

E.g., read-only
master state with
frequent sync or
partitioned sync

E.g.,
transactions
or optimistic
concurrency

Limited
infrastructure size,

since each scheduler
maintains entire state

Distributed
e.g., [12]

Sampled
set of nodes Sampling Optimistic

concurrency Local optima

Hybrid
e.g., [13], [14]

Depends on
combination

Depends on
combination

Depends on
combination

One part is usually
monolithic

thousands of nodes is challenging for a monolithic scheduler
and, thus, often calls for a distributed scheduling approach.

There are multiple architectures for designing distributed
schedulers, namely two-level, shared state, distributed, and
hybrid [1]. We examine their differences from the monolithic
architecture and from each other in four major aspects: i) how
much of the scheduling-related infrastructure state a single
scheduler instance sees, ii) how this state is synchronized,
iii) how scheduling conflicts (i.e., two schedulers assign the
same resources) are handled, and iv) architecture limitations.

Table I summarizes the scheduler architectures. Monolithic
schedulers handle the entire infrastructure state within a sin-
gle instance, which prevents conflicts, but limits scalability
w.r.t. the infrastructure size. Two-level schedulers rely on a
hierarchy, where the first level is responsible for the entire
infrastructure state and statically or dynamically partitions it
among an arbitrary number of second level schedulers. This
prevents conflicts and improves scalability, but it may lead to
local optima and, if the first level is monolithic, scalability may
still be limited. Shared state schedulers operate with multiple
schedulers that share access to the entire infrastructure state.
Conflicts may occur, especially if the local state is outdated
and the scale of the infrastructure is limited, because each
scheduler has a copy of the entire state. Distributed schedulers
rely on multiple schedulers that have a limited view of the
infrastructure state, often obtained by selecting a portion of

1

https://doi.org/10.1109/IC2E59103.2023.00026

Edge San Francisco

Model

Training

Cloud US-West1

YOLO v5

Classi�er

Info

Service

Edge Rome

Model

Training

Cloud Europe-Central

ASP

Edge Sydney

Model

Training

Cloud Australia-East

ASP

YOLO v5

Classi�er

Info

Service

YOLO v5

Classi�er

Info

Service

Fig. 1: Globally Distributed Machine Learning.

nodes (sampling), making this architecture highly scalable.
The sampling algorithm influences the scheduling decisions’
quality and the conflict probability. Hybrid schedulers combine
two of the other approaches, usually a monolithic scheduler
for one type of jobs and a distributed scheduler for all others.

Edge schedulers typically optimize placement for a set of
Edge-specific constraints, such as network latency or geo-
location, but they often lack the scalability needed for an
online scheduler in the Edge-Cloud continuum, because they
rely on computationally intensive algorithms, such as genetic
algorithms, or because they focus on a single cluster and,
hence, lack a distributed architecture. Those that focus on
scalability, e.g., [15]–[20], are often limited to scheduling
batch jobs, not microservices, and none of them consider
multiple globally distributed clusters. Their evaluations are
limited to small clusters with less than 1,000 nodes, which
does not allow drawing conclusions on global scalability.

Typically, clusters are managed by an orchestrator, e.g.,
Kubernetes1 or Nomad2, which is responsible for deploying
and launching jobs and providing management services. The
scheduler is often part of the orchestrator, but it may also be
an external component that only interfaces with it to make job
placement decisions.

The need for globally distributed scheduling in the Edge-
Cloud continuum is exacerbated by novel large-scale ap-
plications that often require global deployments, such as
general public augmented reality (AR)/Metaverse [21] or
geo-distributed machine learning (ML). Such scenarios may
also encompass scheduling on heterogeneous devices, like a
combination of high-end servers and single-board computers,
with the latter being required, e.g., for privacy preserving
preprocessing [22].

A use case of globally distributed ML, based on the Gaia
ML system [23], is shown in Fig. 1. An AR application for
tourists classifies images to display sightseeing information to
its users. Classification jobs use the YOLOv5 CNN model
to match user videos to sights in a city. An info service
provides information to display to the users. Both jobs need
to run as services in Edge clusters close to the users, because
latency is critical in AR applications [24]. Training jobs to
improve the model are run daily in a federated manner in
the Cloud, relying mostly on local images from the closest

1https://kubernetes.io
2https://www.nomadproject.io

Edge clusters and synchronizing the model globally using the
Approximate Synchronous Parallel (ASP) model [23]. With
global communications, latency plays a role and demands a
reduction of packet round trips between scheduler and target
nodes.

We formulate the following research challenges:

RC-1 How can a scheduler for the Edge-Cloud continuum
handle globally distributed Cloud and Edge clusters and
scale reliably with the infrastructure? As previously men-
tioned, monolithic schedulers can only handle a limited
number of nodes, e.g., Kubernetes officially supports up to
5,000 nodes [25]. But also distributed schedulers may have
limitations related to state synchronization, handling of
scheduling conflicts, and scalability. However, scalability
is an important feature of a scheduler [26], especially
when dealing with very large infrastructures that span
multiple, globally distributed clusters [27].

RC-2 How can high-quality samples be collected from glob-
ally distributed clusters, while maintaining low sampling
and scheduling latency? Sampling-based schedulers are
designed to handle large clusters. They commonly either
retrieve samples from a local or shared cluster state, such
as Tarcil [10], or contact nodes directly, like Sparrow [12].
The former approach does not work for globally dis-
tributed clusters, because maintaining a detailed state of
globally distributed nodes is not feasible, nor does the
latter, because contacting many globally distributed nodes
directly would significantly increase scheduling latency,
given global packet round trip times, e.g., 165 ms as
per the Verizon SLA for a Europe-USA packet round
trip [28] (sum of round trips within Europe, USA, and
transatlantic). Additionally, as clusters get more loaded,
it has been reported that larger samples are needed to
find suitable nodes [10], because the samples are more
likely to contain nodes that are full. Such wasted samples
increase load on the scheduler. Thus, a sampling mech-
anism is needed that i) delegates work to the clusters to
minimize the latency incurred by network communication
and ii) leverages job requirements to return only suitable
nodes to avoid an increase in sample size.

RC-3 How can a distributed scheduler increase job through-
put by reducing the number of scheduling conflicts? The
assignment of the same set of resources to two different
jobs by two scheduler instances and the resulting conflict
is an issue recognized by many distributed schedulers [8]–
[11], [13]. Rescheduling the conflicting jobs takes a sig-
nificant amount of time and reduces the scheduler’s job
throughput, because the jobs need to traverse the entire
scheduling lifecycle again. Reducing conflicts requires
careful consideration of the scheduler’s inner workings.
While a job is being committed to a node, the sampling
algorithm may rely on an outdated state and suggest a
node, although it will be full after the commit has com-
pleted. Accounting for this issue and adding mitigation
measures when conflicts do arise can significantly reduce

2

https://kubernetes.io
https://www.nomadproject.io

rescheduling and, thus, increase the overall throughput of
the scheduler.

In this paper we present the open-source Vela Distributed
Scheduler3, which is part of Polaris SLO Cloud4, a SIG of
the Linux Foundation Centaurus project5, a novel open-source
platform for building unified and highly scalable public or pri-
vate distributed Cloud and Edge systems. Vela continues our
line of research on scheduling in the Edge-Cloud continuum
continuum [29] [30]. Our main contributions include:

1) Vela Scheduler, a novel, globally distributed,
orchestrator-independent scheduler with a 3-phase
scheduling workflow to enable optimized scheduling of
microservices at global scale within the Edge-Cloud
continuum. The workflow is distributed across multiple
components to ensure scalability and is comprised of
a sampling phase that retrieves node samples from
globally distributed clusters, a decision phase that picks
the best suitable node, and a commit phase that enforces
the scheduling decision in a conflict-aware manner.

2) 2-Smart Sampling, a two-level, informed sampling mech-
anism that delegates sampling to globally distributed
clusters and leverages job requirements to produce sam-
ples consisting of nodes that are likely to be suitable. This
reduces scheduling latency and sample wastage. Vela’s
design for globally distributed clusters delegates sampling
to agents in the clusters, which frees the scheduler from
communicating with the nodes directly. This delegation
greatly reduces network traffic and latency for the sched-
uler. By leveraging job requirements, the likelihood that
the sample contains suitable nodes is greatly increased,
while avoiding large sample sizes, which would augment
the scheduler’s load. To the best of our knowledge, there
is no other scheduler that is designed to perform sampling
on a global scale or is evaluated in a globally distributed
sampling scenario.

3) MultiBind, a scheduling decision commit phase that au-
tomatically retries committing the job to another node if
a scheduling conflict occurs, without rerunning the entire
scheduling process. This significantly reduces the number
of jobs that need to be rescheduled due to conflicts and,
thus, increases the overall throughput of the scheduler.

This paper is structured as follows: Section II examines re-
lated work, Section III provides an overview of the architecture
of the Vela Distributed Scheduler, and Section IV describes the
mechanisms that realize our contributions. Section V evaluates
our scheduler on multiple interconnected Kubernetes clusters
that represent an Edge-Cloud continuum and Section VI
provides and outlook on future work and concludes the paper.

II. RELATED WORK

The default schedulers of Kubernetes [3] and Docker-
Swarm [4] suffer from the typical issues of monolithic sched-
ulers that we have previously mentioned. There are many

3https://polaris-slo-cloud.github.io/vela-scheduler
4https://polaris-slo-cloud.github.io
5https://www.centaurusinfra.io

works that focus on Edge-related capabilities for monolithic
schedulers, e.g., Rossi et al. [31] propose a latency-aware
Kubernetes scheduler for geo-distributed environments and
Santos et al. [32] add latency- and bandwidth-awareness to
their Kubernetes scheduler extension. Hailiang et al. [33] use
a genetic algorithm that aims to reduce the response time for
microservice-based Edge applications, but the algorithm runs
offline, which inherently prevents it from being scalable. In
general, none of these works consider a distributed approach
to ensure scalability for the Edge-Cloud continuum, hence they
cannot be applied in a globally distributed context like Vela.

Mesos [5] and YARN [6] are two-level schedulers that are
frequently used in production [34], [35]. Their top-level is
monolithic and the second-level relies on partitioning. For
Mesos all scheduling decisions have to pass through the top-
level scheduler, which may result in a bottleneck, and YARN’s
top-level needs to capture the entire cluster state and assign
fine-grained resources to the second level, which may be
an issue if the entire cluster state gets too big to fit into
memory. The Fair Scheduler [36] in YARN allows achieving
a fair resource distribution among second-level schedulers
and Capacity Scheduler [37] ensures that each tenant of a
multi-tenant system gets a minimum share of resources, but
both approaches are designed for the Cloud, not the Edge.
Epsilon [38] and OneEdge [7] are also two-level schedulers,
whose first levels are monolithic. Epsilon’s second level uti-
lizes the shared state concept and supports autoscaling of the
second-level schedulers. OneEdge uses sharding for the second
level schedulers and it supports enforcing and End-to-End
(E2E) latency Service Level Objective (SLO). The major issue
with these approaches is the monolithic first level, which can
hinder scalability – Vela Scheduler aims to avoid this using
its fully distributed, sampling-based approach, which does
not require scheduler instances to maintain any cluster state
beyond the node samples that are retrieved independently for
each job. The downside of sampling is that the ideal solution
may not be part of the sample, an issue that Vela tries to
mitigate using its 2-Smart Sampling mechanism (additionally,
we plan further improvements on this using AI-based sampling
in future work). Hydra [27] builds on top of YARN and greatly
improves scalability by federating multiple two-level clusters
across multiple data centers, however it is designed for the
Cloud and does not focus on Edge clusters.

Apollo [9], Omega [8], Tarcil [10], and ParSync [11] are
shared state schedulers. Apollo’s shared state is centralized
and treated as read-only for the schedulers; the state can only
be updated by status updates received from the cluster nodes.
Omega supports different types of transactions to reduce
scheduling conflicts. ParSync partitions the state internally and
the scheduler instances get updates on different partitions on
every synchronization iteration. The schedulers prefer to pick
nodes from recently updated partitions to avoid relying on stale
state data and, thus, reduce the chance for scheduling conflicts.
Tarcil improves speed by sampling nodes from a shared state,
but if the cluster is heavily loaded the sample size becomes
very large, e.g., 82% of the nodes in one of their examples.

3

https://polaris-slo-cloud.github.io/vela-scheduler
https://polaris-slo-cloud.github.io
https://www.centaurusinfra.io

Sampling Phase

Job Sampling
Queue

Vela
Scheduler

Vela Cluster Agent A

Nodes
Cache

Sampling
Pipeline

Filtering &
Scoring
Plugins

Decision
Pipeline
Queue

Decision Phase

Filtering & Scoring
Plugins

Commit Phase

Try committing

MultiBind Mechanism

1. Node (cluster A)

2. Node (cluster B)

3. Node (cluster A)

Vela Cluster Agent A

Commit
Plugins

Commit
Pipeline

Decision
Pipeline

Sampler Pool

Nodes
Cache

Fig. 2: Scheduling Workflow and Job Lifecycle.

Arktos [39] improves on the scalability of the Kubernetes
scheduler by turning it into a shared state scheduler. All shared
state schedulers suffer from the issue that the entire cluster
state may become too large to be handled by a single scheduler
instance and from the occurrence of scheduling conflicts. Our
approach avoids the former issue by being fully distributed and
drastically reduces conflicts using the MultiBind mechanism.

Sparrow [12] is a distributed scheduler designed for batch
jobs that relies on sampling to collect nodes. The nodes
are contacted directly, which is not feasible with globally
distributed nodes. A late-binding mechanism is used to ensure
that a job starts as quickly as possible: a job is assigned to the
queues of all eligible nodes and the first node that dequeues
the job gets to execute it. Sparrow cannot have scheduling
conflicts, because jobs can always be queued on a node, an
assumption that is only valid for batch processing systems.
While Sparrow supports constraints for its sampling phase,
they are evaluated in a centralized fashion. Vela Scheduler
avoids contacting nodes directly to allow for global distribution
and it specifically addresses scheduling conflicts, because it is
not restricted to batch jobs.

Mercury [13] and Hawk [14] are hybrid schedulers that
combine a monolithic scheduler for one type of jobs with a
distributed scheduler for other jobs. Mercury divides the two
scheduling approaches between “guaranteed” and “queueable”
jobs, while Hawk divides them between “long“ and “short“
jobs respectively. Mercury solves conflicts by terminating
queueable jobs in favor of guaranteed jobs, while Hawk
avoids conflicts by queuing. Naturally, the monolithic part
can become a bottleneck and many systems have a single
job type, so these approaches are not always applicable. Vela
Scheduler does not have this bottleneck and, while being
primarily designed for microservices, it can support any job
type through appropriate plugins.

III. VELA 3-PHASE SCHEDULING WORKFLOW

The Vela Distributed Scheduler is designed to manage mul-
tiple, globally distributed Edge and Cloud clusters. It consists
of two components, the Scheduler and the Cluster Agent.
The scheduler can be deployed with an arbitrary number
of instances, which are independent of the infrastructure,

S
o

rt

F
il

te
r

S
co

re

R
e

se
rv

e

Vela Scheduler Lifecycle

S
a

m
p

le

N
o

d
e

s

Decision Pipeline

Vela Scheduler

Vela Cluster Agent

F
il

te
r

S
co

re

S
a

m
p

le

N
o

d
e

Sampling Pipeline

C
h

e
ck

C
o

n
fl

ic
ts

Commit Pipeline

C
o

m
m

it

Fig. 3: 3-Phase Scheduling Workflow with Sampling, Decision, and Commit
Pipelines.

i.e., clusters, they need to manage. Due to its orchestrator-
independent design, clusters may be operated by different
orchestrators, e.g., one cluster might use Kubernetes, while
another cluster might use Nomad. The exact definition of a
cluster node depends on the respective orchestrator – typically,
a node will be either a VM, a bare-metal server, or a single-
board computer. Every node can host multiple jobs, as long as
it has sufficient resources to accommodate them. To become
enabled for the Vela Scheduler, each cluster only needs to
deploy the Cluster Agent, typically as a controller.

The 3-phase scheduling workflow (see RC-1) is the logical
centerpiece of Vela. The workflow and the lifecycle of a job
within it are shown in Fig. 2. Each of the three phases,
i.e., sampling, decision, and commit, contains a pipeline;
these pipelines are shown in Fig. 3. Each pipeline consists
of multiple stages. The business logic within each stage is
realized through plugins, which facilitates the implementation
of diverse scheduling policies.

The 3-phase scheduling workflow starts when a user or
another system component, such as an autoscaler, submits
a job to an arbitrary instance of the Vela Scheduler. The
scheduler instance sorts incoming jobs, e.g., based on priority,
in its Sort stage and then adds them to its Sampling Queue.

Once the scheduler dequeues the job, it enters the sampling
phase with the 2-Smart Sampling mechanism – the sampler
pool can process multiple jobs in parallel in this phase. 2-
Smart Sampling consists of two steps, the first one is executed
by the Sample Nodes plugin. It selects a random subset of all
configured clusters to be used for sampling and requests a
sample from their respective Cluster Agents, passing the job’s
requirements along to ensure that only nodes that fulfill these
requirements are returned.

Each cluster’s Cluster Agent, then, executes the second
step of 2-Smart Sampling. The agent maintains a frequently
updated cache of its cluster’s nodes – the exact implementa-
tion depends on the underlying orchestrator, e.g., Kubernetes
provides a watch mechanism that notifies the agent on nodes
list changes. The agent selects a set of nodes from this cache
and executes the sampling pipeline, which employs a multi-
criteria decision making (MCDM) approach, consisting of the
Filter and the Score stages. Filter plugins remove nodes that
are not suitable for hosting a job and Score plugins assign
scores from 0 to 100 to the nodes that have survived filtering,

4

based on how suitable they are. A higher score indicates better
suitability for the job, e.g., empty nodes may score higher than
partially loaded ones. The sampled nodes are then returned
to the Vela Scheduler, which places them, together with the
job, in the decision pipeline queue. The presence of this queue
ensures that sampling, which may consume some time, can be
executed on different threads from the decision pipeline. This
allows avoiding situations where all threads might be blocked
waiting for samples, while the CPU remains idle, even though
it could be used for the decision pipeline. If desired, a timeout
can be configured for each sampling request to a Cluster Agent
– this can be used if a use case has stringent requirements on
scheduling latency.

When the job exits this queue, it enters the decision phase.
The decision pipeline further evaluates the sampled nodes for
their suitability using another set of Filter and Score plugins
that allow enforcement of global policies. Multiple decision
pipelines, each responsible for a single job, are executed
on concurrent threads. Since the Cluster Agent’s sampling
pipeline also includes scoring, each node already has a list
of scores produced by the sampling Score plugins. The scores
computed by the scheduler’s Score plugins are added to this
list. After all eligible nodes are scored, the decision pipeline
accumulates the scores and picks the top m nodes with the
highest score, with m being determined by the configuration
of the MultiBind mechanism. The Reserve stage can be used
by plugins to update internal data structures. At the end
of the decision pipeline, the scheduler advances the top m
nodes to the commit phase. The decision pipeline requires no
synchronization with other pipeline- or scheduler instances,
because the only point of synchronization is located in the
subsequent commit phase and is handled by the Cluster Agent.

In the commit phase the MultiBind mechanism instructs the
Cluster Agent, responsible for the cluster of the first of the m
selected nodes, to commit the scheduling decision to the node.
Since scheduling decisions can be made simultaneously by
multiple scheduler instances, scheduling conflicts may occur,
i.e., two jobs may be assigned to the same node by different
scheduler instances, but the node only has enough remaining
capacity to host one of them. To handle such conflicts we
rely on an optimistic concurrency approach within the Cluster
Agent, which checks for each job, if the resources are still
available. In case of a conflict, the first job to arrive is
committed to the node, the second job is rejected. To this
end, the commit pipeline first reserves resources in the agent’s
cache to make them unavailable to the sampling pipeline, then
fetches the current information about the node, checks if the
constraints are still fulfilled, and, finally commits the decision
by binding the job to the node. If the commit pipeline fails, the
MultiBind mechanism takes the next best node from the list of
m most suitable nodes and tries committing the job to that one.
Only if all m nodes fail, will the job be considered as having a
scheduling conflict, which requires rescheduling, i.e., running
the entire scheduling workflow again. Our experiments show
that the MultiBind mechanism reduces the number of conflicts
by a factor of up to 10.

Currently, Vela Scheduler is aimed at stateless microser-
vices. However, its plugin-based design allows adding plugins
to support stateful microservices or batch jobs in the future.

Vela is fault-tolerant by design. The failure of a Cluster
Agent means that its cluster is not available for scheduling,
but does not affect the availability of other clusters. Since
no coordination is needed among scheduler instances, the
failure of one instance only requires users to submit new
scheduling requests to another instance, but has no effect on
the operational status of the overall system.

IV. VELA’S MAIN SCHEDULING MECHANISMS

In this section we present the two most important scheduling
mechanisms, i.e., 2-Smart Sampling and MultiBind in detail.

A. 2-Smart Sampling

To reduce latency and avoid large sample sizes, even in
loaded clusters (see RC-2), Vela Scheduler introduces 2-Smart
Sampling, a two-step informed sampling approach, where the
scheduler delegates sampling to the Cluster Agents in the
selected clusters. This delegation frees the scheduler from
communicating with globally distributed nodes directly, which
would incur high latency, and allows sampling to take full
advantage of the local information that is available within the
cluster. Specifically, 2-Smart Sampling executes in two steps:

1) The scheduler picks a random subset of all configured
clusters to be contacted for samples. Using only a sub-
set ensures scalability and reduces scheduling conflicts.
Then, the scheduler contacts the Cluster Agent of each
selected cluster for a node sample, passing along all the
job’s requirements.

2) Each contacted Cluster Agent runs the sampling pipeline
to pick a set of nodes and check them for eligibility for
hosting the job. The nodes that are deemed eligible are
scored and then returned to the scheduler.

The percentage of clusters to be sampled (Cp) and the per-
centage of nodes to sample per cluster (Np) can be configured.

The sampling pipeline in the second step of 2-Smart
Sampling consists of three stages (see Fig. 3): Sampling
Strategy, Filter, and Score. The scheduling policy of each
stage is implemented by one or more plugins. Currently we
provide two Sampling Strategy plugins (a sampling request
specifies which one to use), one for random sampling and
one for Round-Robin sampling, and three Filter plugins:
ReourcesFit ensures that a node fulfills the job’s resource
requirements, GeoLocation allows a job to specify that it
needs to run in a specific location, and BatteryLevel allows
restricting a job to running on a node that has a minimum
battery level (if the node has a battery) – the former two
plugins also tie into the Score stage.

For each job 2-Smart Sampling operates as shown in
Algorithm 1:
Step 1. Lines 3–9 execute the first step of 2-Smart Sampling,
i.e., pick a random subset of all clusters and request a sample
from their Cluster Agents. The returned samples are added
to the decision pipeline queue, together with the job.

5

Algorithm 1 Sampling Phase

1: Input: j: The job for which to sample nodes;
Cp: Percentage of clusters to sample;
Np: The number of nodes to sample per cluster;
strat: The sampling strategy to use;

2: Output: Se: The set of sampled nodes that are eligible for hosting j and
their scores;

▷ The 1st step of 2-Smart Sampling runs within the scheduler
3: Se ← {}
4: C ← PICKRANDOMCLUSTERSTOSAMPLE(Cp)
5: for all c ∈ C do
6: Se,c ← C.RUNCLUSTERSAMPLINGPIPELINE(j,Np, strat)
7: Se ← Se ∪ Se,c

8: end for
9: ADDTODECISIONPIPELINEQUEUE(j, Se)

▷ The 2nd step of 2-Smart Sampling, i.e., the sampling pipeline, runs
within a Cluster Agent

10: function RUNCLUSTERSAMPLINGPIPELINE(j,Np, strat)
11: sampleSize← COMPUTESAMPLESIZE(Np)
12: Se,c ← {} ▷ The sampled nodes from this cluster

13: while |Se,c| < sampleSize AND NOT timeout occurred do
14: Si ← SAMPLENODESWITHSTRATEGY(strat, sampleSize)
15: for all n ∈ Si do
16: if RUNALLFILTERPLUGINS(n) = true then

▷ If the node survives all filter plugins, it is eligible.
17: Se,c ← Se,c ∪ {n}
18: end if
19: end for
20: end while

21: for all n ∈ Se,c do
22: RUNALLSCOREPLUGINS(n) ▷ Run all score plugins and add

the scores to the node n
23: end for

24: return Se,c

25: end function

Step 2. Lines 10–25 execute the second step of 2-Smart Sam-
pling in each involved Cluster Agent. Lines 13–20 constitute
the sampling and filtering loop, which proceeds until enough
eligible nodes have been found or a timeout is reached.
Line 14 gets a set of nodes from the Sampling Strategy
plugin, e.g., random sampling (default) or Round-Robin.
Lines 15–19 run all Filter plugins on each sampled node
to determine if it fulfills the job’ requirements. Lines 21–23
execute all Score plugins on each eligible node. Subsequently,
the complete cluster sample is returned to the scheduler.

This approach ensures that each cluster’s sample only con-
tains nodes that meet the job’s requirements, which allows for
a smaller sample size. The sampling pipeline plugins need to
ensure that the job’s resource requirements are met by a node,
but they may also implement complex policies that further
improve the quality of the sample. The Cluster Agent may
also implement cluster-specific scheduling policies.

B. MultiBind Commit Phase

Vela Scheduler relies on an optimistic concurrency approach
to deal with multiple decision pipeline or scheduler instances
running in parallel. No cluster node resources are locked
during the sampling phase, because most of them will not
be used – in the end the job is assigned to a single node.
This improves scalability, but entails that when committing

a scheduling decision, another decision pipeline or scheduler
instance may have already claimed some of the required
resources on the node, resulting in a scheduling conflict for the
current job. This is a common issue in distributed scheduling,
which is normally handled by rescheduling the job (see RC-
3) [8]–[11]. In Vela Scheduler we mitigate this issue by the
randomness in both steps of 2-Smart Sampling. Nevertheless,
scheduling conflicts can occur. Note that the number of jobs
per node is not limited, i.e., if the selected node has enough
resources for both jobs, both are committed and executed –
a conflict only occurs, if the node does not have sufficient
resources for hosting both jobs.

To further reduce the number of scheduling conflicts that
require rescheduling, Vela Scheduler relies on its MultiBind
commit phase: instead of trying to commit the job only to the
highest scored node and rescheduling it, if a conflict occurs,
we use a list of the m highest scored nodes and try committing
to the next node. Only if committing to all m nodes fails, the
job is considered to have a scheduling conflict and needs to
be rescheduled. Our tests in Section V show that a setting
of m = 3 reduces the scheduling conflicts by factor of 10
compared to not using MultiBind. When trying to commit a
job to a node, the MultiBind mechanism contacts the Cluster
Agent of the node’s cluster to execute the commit pipeline.
This pipeline, which supports running multiple instances in
parallel, contains two stages, whose logic is implemented
using plugins: the Check Conflicts stage and the Commit stage.
The entire process executed by the MultiBind commit phase
is shown in Algorithm 2:

Algorithm 2 Commit Phase

1: Input: j: The job to commit;
N = (n1, ..., nm): The m highest scored nodes as commit candidates;

2: Output: SUCCESS or CONFLICT ;

▷ The MultiBind mechanism runs within the scheduler
3: for all n ∈ N do
4: if RUNCLUSTERCOMMITPIPELINE(n, j) = SUCCESS then
5: return SUCCESS
6: end if
7: end for
8: return CONFLICT ▷ There was a conflict for all nodes in N .

▷ The commit pipeline runs within the Cluster Agent
9: function RUNCLUSTERCOMMITPIPELINE(n, j)

10: RESERVERESOURCESINCACHE(n, j)
11: LOCK(n)

12: n∗ ← FETCHNODEINFO(n)
13: J ← FETCHJOBSONNODE(n∗)
14: n∗ ← COMPUTEAVAILABLERESOURCES(n∗, J)

15: if RUNCHECKCONFLICTSPLUGINS(j, n∗) = CONFLICT then
16: UNRESERVERESOURCESINCACHE(n, j)
17: result← CONFLICT
18: else
19: COMMIT(j, n∗)
20: result← SUCCESS
21: end if

22: UNOCK(n)
23: return result
24: end function

6

Step 1. Lines 3–8 represent the MultiBind mechanism, which
executes in the scheduler. It iterates over the list of the m
highest scored nodes and tries to commit the job to every
node, stopping and reporting a scheduling success if the
commit succeeds. If all commits fail, a scheduling conflict is
reported. Each commit attempt, triggers the commit pipeline
in the respective Cluster Agent.

Step 2. Line 10 proactively reserves the job’s resources in the
nodes cache to make them unavailable for sampling requests.
Free resources that are not required by the job are still
available for sampling.

Step 3. Line 11 locks the target node within the Cluster Agent
such that no other commit pipeline can access it. Unreserved
resources on the node are still available for sampling.

Step 4. Lines 12–14 fetch the target node and all jobs cur-
rently assigned to it from the orchestrator and, together with
information from the nodes cache, compute the currently
available resources on the node.

Step 5. Lines 15–17 execute the Check Conflicts plugins to
check for a scheduling conflict. If there is a conflict, we
undo the resources reservation in the nodes cache carried out
in step 2 and prepare to report the conflict to the scheduler.

Step 6. Lines 19–20 run the Commit plugin to commit the
job to the node.

Step 7. Lines 22–20 unlock the target node in the Cluster
Agent to make it available to other commit pipeline instances
again and then return the result to the scheduler.
Reserving resources in the nodes cache is a critical step,

because otherwise the sampling pipeline would consider them
still available, even though they are currently being bound to
a job. Fetching the target node and its assigned jobs is needed,
because the nodes cache could be outdated. The Commit stage
first creates the orchestrator-specific job object and then binds
it to the target node, which completes the commit pipeline.

V. EVALUATION & IMPLEMENTATION

To evaluate our scheduler we focus mainly on the scalability
aspect at a global scale, while keeping low latency and reduc-
ing scheduling conflicts, as described in our contributions. All
code to run the experiments, as well as, all results can be
found in our repository6.

A. Implementation

Vela Scheduler and its Cluster Agent are implemented in
Go; all their APIs are JSON-based REST APIs. The two
largest engineering challenges lie within the Cluster Agent.
The first one is the nodes cache, which needs to support a very
high read frequency from sampling, but also a considerable
write frequency stemming from the commit pipeline and
orchestrator updates. The cache supports read-write locking,
but to avoid holding locks for a long time, we treat all node
objects as immutable. Reading is only done at three points:
at the beginning of the sampling pipeline, by the Sampling
Strategy plugins, and at the beginning of the commit pipeline.

6https://polaris-slo-cloud.github.io/vela-scheduler/experiments

Writing is also done at three points: once at the beginning
and at the end of the commit pipeline and when there is a
node status update from the orchestrator. The second major
engineering challenge is to reserve resources in the nodes
cache as early as possible in the commit phase. It is critical
to do this immediately for all incoming jobs, before locking
the node (this locking only applies to the commit pipelines,
not the nodes cache), because otherwise sampling would still
consider resources as available, which will be consumed by
a job waiting to be committed. At the end of the commit
pipeline, each resource reservation is either committed or
removed, depending on the outcome of the pipeline. Further
implementation details can be found in our code repository.

B. Experiments Setup

To evaluate the scalability of Vela Scheduler we set up
10 globally distributed Kubernetes clusters, which vary in size,
depending on the experiment. We run a single instance of
Vela Scheduler, which, however, does not limit the distributed
nature of our scheduler, because i) the 2-Smart Sampling
mechanism is fully distributed and ii) each scheduler instance
runs multiple sampling, decision, and commit pipelines in-
dependently of each other in parallel, which is the same as
running multiple scheduler instances.

To set up the clusters in our testbed we use 10 Google Cloud
Platform (GCP) VMs of type c2-standard-8, each having
8 vCPUs and 32 GB of memory and running on a physical
machine with an Intel Cascade Lake or later processor. Every
VM is bootstrapped with Ubuntu 22.04, on top of which
we install MicroK8s7 v1.25.6 to initialize a distinct single-
node Kubernetes cluster. For all experiments, we rely on
fake-kubelet8 to create simulated nodes in each MicroK8s
cluster. The resource properties of these nodes can be easily
configured and they are treated as ordinary nodes by Kuber-
netes. However, fake-kubelet nodes do not actually execute
any pods (i.e., jobs), but this is not needed for our experiments,
since we benchmark the scheduling performance, i.e., until
a job has been bound to a node. Sampling performance is
also not affected by fake-kubelet, because our sampling
algorithm works against the Cluster Agent’s nodes cache,
which is maintained in the background. Other than consuming
some CPU time on each VM, the use of fake-kubelet does
not impact the metrics evaluated in this paper.

Since Vela Scheduler focuses on the Edge-Cloud continuum,
the 10 clusters are intentionally not homogeneous. We simulate
three Cloud and seven Edge clusters with different types
of nodes; the hosting VMs are located in different regions.
Cloud clusters are made up of a combination of VMs of three
different sizes and Edge clusters consist of a combination of
Raspberry Pi9 single-board computers and cloudlet servers.
The node details, the percentage of each node type in the
composition of a cluster, and the cluster regions are listed in
Table II. These node details serve as realistic configurations

7https://microk8s.io
8https://github.com/wzshiming/fake-kubelet
9https://www.raspberrypi.org

7

https://polaris-slo-cloud.github.io/vela-scheduler/experiments
https://microk8s.io
https://github.com/wzshiming/fake-kubelet
https://www.raspberrypi.org

TABLE II: Node Types in Cloud and Edge Clusters.

Node Type &
Occurrence (%) vCPUs RAM Regions

C
lo

ud

50% cloud-small 2 4 Belgium, Oregon,
Finland30% cloud-medium 4 8

20% cloud-large 8 16

E
dg

e

20% Raspberry Pi 4B 4 2 Belgium, Netherlands,
Frankfurt, Montreal,
Oregon, Finland, Iowa

40% Raspberry Pi 4B 4 4
30% Raspberry Pi 3B+ 4 1
10% cloudlet 4 8

for the resource properties of the simulated nodes. There is no
difference between simulating a cloud node and a Raspberry
Pi node using fake-kubelet, because for our experiments
only the configured resource properties are of interest. Vela
Scheduler itself is also deployed on a c2-standard-8 VM
and is located in the Zurich region. All tests use Apache JMe-
ter10 as a load generator – we run it on a VM with 24 vCPUs
and 47 GiB of RAM. The hosting server at our university
has an Intel Xeon CPU (Cascade Lake) with a base clock
of 2.1 GHz. JMeter does not allow for configuring a specific
request rate per second, but instead requires configuring the
number threads that generate requests and the approximate
timing they should use, e.g., one request every 10 milliseconds.

We run three sets of experiments: i) configuration tuning to
find optimal settings for Vela Scheduler, ii) scalability with
respect to infrastructure to assess the performance of our
scheduler on an increasing number of nodes, and iii) scal-
ability with respect to workload to a assess the performance
on an increasing scheduler workload.

Configuration Tuning aims to find optimal values for Cp

and Np, i.e, the percentage of clusters and the percentage of
nodes to sample in 2-Smart Sampling. To this end, we evaluate
settings of Cp = {10%, 20%, ..., 100%} and, for each value,
run an experiment iteration with Np = {4%, 8%, 12%, 16%},
for a total of 40 iterations. Each iteration tries to schedule
11, 200 jobs requiring 4 vCPUs and 4 GiB of RAM on clusters
of 2, 000 (2K) nodes each, adding up to 20K nodes in total.
11, 200 is the maximum number of jobs of this size that this
cluster configuration can support, thus the scheduler must find
all available space to avoid scheduling failures. Additionally,
50% of the nodes are too small to host such a job.

The two scalability experiments use the settings determined
by the configuration tuning to evaluate the scalability of Vela
Scheduler. Akin to the previous experiment, each scalability
experiments uses 10 clusters, each of which contains a tenth
of the total nodes in the experiment, i.e., for 1K total nodes
each cluster contains 100 nodes and for 20K total nodes each
cluster contains 2K nodes.

The experiment on scalability with respect to infrastructure
schedules 1K jobs on increasing cluster sizes, specifically
1K, 5K, 10K, 15K, and 20K total nodes (for comparison,
Kubernetes officially only supports 5K total nodes [25]). We
run three iterations for each of these cluster sizes. The jobs
intentionally fit on each node to allow us to focus on measuring
the execution performance.

10https://jmeter.apache.org

The scalability experiment with respect to workload op-
erates on 20K total nodes (i.e., 2K nodes per cluster) and
gradually increases the scheduler workload across 15 itera-
tions, each lasting three minutes. In this experiment the jobs
are heterogeneous; specifically each JMeter thread iteration
creates one job requiring 1 CPU and 1 GiB, two jobs needing
2 CPUs and 2 GiB, and one job requiring 4 CPUs and 4 GiB of
RAM. We intentionally use CPU and RAM requirements only,
because adding battery or geo-location requirements would
reduce the number of eligible nodes and, hence, saturate the
clusters sooner. Each job counts as one scheduling request. We
use thread and timing configurations for JMeter to achieve job
rates between 15.18 requests/sec and 290.36 requests/sec.

C. Results

1) Configuration Tuning: For this experiment we focus
on finding the lowest values for Cp and Np that yield zero
scheduling failures. We aim for the lowest configuration val-
ues, because sampling fewer (globally distributed) clusters and
fewer nodes within each cluster naturally leads to faster exe-
cution times than sampling more clusters and/or nodes. Since
rescheduling attempts are common in distributed schedulers,
we consider a job to have failed scheduling, only after having
attempted rescheduling a total of ten times without success.

Fig. 4 shows the number of scheduling failures as a percent-
age of the total jobs. It is evident that the number of failures
decreases as the number of sampled clusters increases, because
the scheduler has more nodes to choose from. The failures
first reach zero at Cp = 50% and Np = 4%, which is what
we will use for the remaining experiments. At Cp = 60% and
Np = 4%, there is a single failure, but starting at Cp = 70%,
there are no more failures, which is why we have excluded
larger Cp values from Fig. 4 for clarity. The full set of results,
including the number of rescheduling attempts, is available in
our repository. For the remainder of this paper we use the
above mentioned lowest Cp and Np values that resulted in
no failures, i.e., perfect scheduling, within this experiment.
However, future work may investigate dynamic adaptation of
these values, because as the utilization of the clusters increases
or decreases, different Cp and Np values may be needed to
maintain a low number of failures and scheduling conflicts.

2) Scalability with Respect to Infrastructure: This experi-
ment focuses on evaluating the performance of Vela Scheduler

Fig. 4: Scheduling Failure Percentages for Configuration Tuning.

8

https://jmeter.apache.org

Fig. 5: Mean Scheduling Times (ms) at Cp = 50% and Np = 4% for Total
Nodes.

Fig. 6: Sampling Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

on increasing cluster sizes to show its scalability. We examine
execution times of the sampling phase, the commit phase, and
the E2E times, i.e., the time from adding a job to the sampling
queue until a successful end of the commit phase. Since we
noticed a significant latency increase of the MicroK8s API
server under high load (e.g., creating a pod object sometimes
took about 8 seconds), we do not include the interaction with
Kubernetes in the commit and E2E metrics, instead we fetch
node information only from our cache and consider the commit
pipeline successful once we make the commit in our cache,
before we issue a write request to the orchestrator. This allows
us to focus solely on the Vela Scheduler performance.

Fig. 5 summarizes the mean execution times in this ex-
periment, showing a linear increase for all of them. We
observe two different E2E times: one including time spent in
the sampling queue (E2E) and one without sampling queue
time (E2E-no-queue or E2E-nq). When including queuing
time, E2E time increases much faster, albeit still linearly. This
is because as the sampling duration increases, the threads
responsible for step one of 2-Smart Sampling in the scheduler
are blocked for a longer time. Since we have 80 sampling
threads (CPU cores × 10) in the experiment, these threads are
at some point all waiting for responses and thus many of the
1, 000 jobs that arrive in very quick succession need to stay
in the queue longer. This could be alleviated, e.g., by running
multiple concurrent scheduler instances.

More detailed breakdowns of the sampling, commit, and
E2E-nq times are shown in Fig. 6, Fig. 7 and Fig. 8 respec-
tively. For 1K total nodes, sampling takes a mean of 243.3 ms,

Fig. 7: Commit Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

Fig. 8: End-to-End Times (ms), without Sampling Queue, at Cp = 50% and
Np = 4% for Total Nodes.

which is a reasonable time for getting samples from five
globally distributed clusters, considering global packet round
trip times (e.g., the Verizon SLA for a Europe-USA packet
round trip, including intra-Europe and intra-US round trips is
165 ms [28]). Sampling times increase linearly with the cluster
sizes to a mean of 902.1 ms for 20K total nodes. Since the
Cluster Agent performs sampling on its nodes cache, which is
regularly updated in the background, no communication within
the cluster is necessary in this phase. However, as the cluster
size increases, the absolute number of nodes per sample also
increases, hence more processing time is needed for larger
clusters. Commit times increase linearly as well, ranging from
53.1 ms for 1K nodes to 182.8 ms for 20K nodes. Since the
commit phase involves only communication with the target
cluster, conflicts checking for a single node, cache operations,
and possible MultiBind retries, its contribution to the E2E
time is fairly low. E2E-nq times also increase linearly from
297.9 ms for 1K nodes to 1087.1 ms for 20K nodes. This
shows that most of the time is spent in 2-Smart Sampling,
which is reasonable given that all Filter and Score plugins
currently run as part of the sampling pipeline.

The MultiBind overhead when trying to commit to all
m = 3 nodes, compared to succeeding on the first node, varies
depending on the communication latency with the selected
clusters. However, it is evident from the execution time results
that MultiBind provides considerable time savings over the
alternative strategy of rerunning the entire Vela Scheduler
lifecycle on every scheduling conflict, because this would
encompass not only contacting at least one more cluster for

9

TABLE III: Scheduling Decisions and Throughput.

Req
/

sec

Queuing
Time

(msec)

Scheduling
Decisions/sec

(SDPS)

Throughput
w MultiBind

(jobs/s)

Throughput
no MultiBind

(jobs/s)
54 0 54 54 49
72 1 72 72 62
94 6 95 94 75
99 106 100 98 73

133 30,097 110 107 77
175 35,499 238 96 87
212 35,672 384 99 94
254 32,562 608 116 112
290 30,847 817 134 131

committing, but also running the complete sampling phase
again.

3) Scalability with Respect to Workload: In this experiment
we evaluate all results with focus on the scheduler’s throughput
in jobs per second (jobs/s) and the total number of scheduling
decisions per second (SDPS). We calculate the throughput by
dividing the number of successfully scheduled jobs by the total
time the Vela Scheduler was active. This time is calculated
using the difference between the scheduling finish timestamps
of the last successful job and the first successful job. We
compute this value for every iteration of our experiment and
round it to the next integer value, giving us a throughput
ranging from 15 jobs/s up to 134 jobs/s. The scheduling
decisions per second (SDPS) are the total number number of
scheduling attempts irrespective of their results (i.e., success,
conflict, rescheduling due to no nodes found, or failure due to
too many rescheduling attempts) divided by the total execution
time. The SDPS range from 15 to 817. We stopped our
experiments at this number, because the simulated cluster
resources were getting exhausted, thus, leaving too little space
for scheduling other jobs.

Table III summarizes the results of this experiment. It
shows the request rate generated by JMeter in requests per
second (req/s), the mean queuing time of a job before it
is dequeued by the sampling pipeline, the SDPS, and the
throughput in successfully scheduled jobs per second with and
without MultiBind. The mean queuing time and the SDPS are
good indicators of whether the scheduler is able to keep up
with the incoming workload. Up until 99 req/s the queuing
time is negligible, whereas starting with 133 req/s it suddenly
rises to 30 seconds. Likewise, the SDPS are equal to or
greater than the request rate up until 99 req/s and start lagging
behind at 133 req/s. The throughput with MultiBind remains
approximately equal to the input request rate (the difference
of 1 in the row with 99 req/s is caused by rounding, the
actual difference is less than 0.042), until 133 req/s, where
it starts to fall behind. These values indicate that the single-
instance configuration of Vela in the experiments can reliably
sustain the scheduling of an input workload of approximately
100 req/s. While this is sufficient for our AR use case, Vela
is capable of much higher SDPS, as we discuss in the next
paragraph. The sudden increase in queuing time is due to
the sampling threads waiting for responses from the Cluster
Agents. A maximum CPU usage of 93% in the scheduler
VM indicates that the current thread configuration is ideal and

Fig. 9: Scheduling Conflicts with and without MultiBind.

that the scheduler needs to be scaled out to further increase
performance. Conversely, the Cluster Agents show a peak
CPU usage of approximately 26%, indicating that thread-
level parallelism could be further increased before scaling out,
which we defer to future work.

The SDPS show a significant increase after 133 req/s,
because of the number of rescheduling attempts, due to not
finding suitable nodes. Rescheduling attempts rise from zero
until 99 req/s and 0.04% at 133 req/s to 53.4% at 175 req/s and
75.75% at 290 req/s, resulting in up to 817 total SDPS in the
last case. This is caused by resources becoming scarce in the
cluster, which leads to not finding any suitable nodes during
sampling. However, this shows that a single Vela Scheduler
instance is capable of supporting high numbers of SDPS, while
managing clusters of 20k total nodes.

As previously noted, scheduling conflicts are common in
distributed schedulers. Their occurrence rate should be as
low as possible to avoid rescheduling jobs, which consumes
processing time. In Fig. 9 we examine the percentage of
scheduling conflicts of Vela Scheduler with and without the
MultiBind mechanism. The number of scheduling conflicts
with MultiBind is reported directly by our scheduler, while
the number of conflicts without MultiBind is obtained by
counting all successful commit phases, where MultiBind re-
tried committing at least once. For the first five experiment
iterations there are between zero and two scheduling conflicts
with MultiBind. Then, the rate starts increasing gradually,
but stays below 1% of the total jobs until a throughput of
94 jobs/s, reaching its highest value of 2.76% at 107 jobs/s.
These numbers are very low compared to scheduling without
MultiBind. In this case there are 2.09% scheduling conflicts
already in the first experiment iteration, gradually increasing
up to a maximum of with 28.2% at 107 jobs/s. This clearly
shows the benefit of MultiBind; without it, the scheduling time
would double or triple for up to 25% of the jobs, because
they would need to traverse the Vela Scheduler lifecycle two
or three times, due to rescheduling. Altogether the numbers
show very promising results, with Vela Scheduler having
linear scalability and the MultiBind mechanism being a great
improvement over a simple rescheduling on conflict approach.

VI. CONCLUSION

In this paper we have presented Vela, a globally dis-
tributed, orchestrator-independent scheduler for the Edge-

10

Cloud continuum with a 3-phase scheduling workflow. Its 2-
Smart Sampling mechanism delegates sampling to globally
distributed clusters, freeing the scheduler from communicating
with nodes directly, thus, reducing latency. By considering the
requirements of a job during sampling, the clusters produce
meaningful samples that only contain nodes that are capable of
hosting the job, thus reducing sample wastage and keeping the
sample size small. The MultiBind mechanism greatly reduces
scheduling conflicts by retrying committing a job to the second
or third best suitable node, if the commit to a previous one
fails, which significantly increases scheduler throughput. We
have evaluated Vela Scheduler on a testbed with 10 clusters
with up to 20k simulated nodes, showing its scalability.

As future work we intend to add more plugins to the sched-
uler’s pipelines to add awareness of Service Level Objectives,
such as network requirements, and awareness of serverless
workflows as described in [40]. Furthermore, we plan to imple-
ment AI-based sampling strategies that leverage information
on the previous execution of similar jobs to produce even
better samples and we want to further improve the scalability
of our approach by increasing sampling performance and
introducing sharding into the Cluster Agents.

ACKNOWLEDGMENT

The authors thank Vı́ctor Casamayor Pujol from the Dis-
tributed Systems Group, TU Wien for plotting the 3D graph.

REFERENCES

[1] M. Schwarzkopf, “The evolution of cluster scheduler architectures,”
2016. [Online]. Available: https://www.cl.cam.ac.uk/research/srg/netos/
camsas/blog/2016-03-09-scheduler-architectures.html

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems -
EuroSys ’15, L. Réveillère, T. Harris, and M. Herlihy, Eds. New York,
New York, USA: ACM Press, 2015.

[3] The Kubernetes Authors, “Scheduling framework — kubernetes,” 2021.
[Online]. Available: https://kubernetes.io/docs/concepts/scheduling-
eviction/scheduling-framework/

[4] Docker Inc., “Scheduler design,” 2017. [Online]. Available: https:
//github.com/docker/swarmkit/blob/master/design/scheduler.md

[5] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11). Boston,
MA: USENIX Association, 2011.

[6] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA:
Association for Computing Machinery, 2013.

[7] E. Saurez, H. Gupta, A. Daglis, and U. Ramachandran, “Oneedge: An
efficient control plane for geo-distributed infrastructures,” in Proceedings
of the ACM Symposium on Cloud Computing, ser. SoCC ’21. New York,
NY, USA: Association for Computing Machinery, 2021.

[8] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: Association for
Computing Machinery, 2013.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for
cloud-scale computing,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, 2014. [Online]. Available: https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/boutin

[10] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
scheduling speed and quality in large shared clusters,” in Proceedings of
the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15. New
York, NY, USA: Association for Computing Machinery, 2015.

[11] Y. Feng, Z. Liu, Y. Zhao, T. Jin, Y. Wu, Y. Zhang, J. Cheng,
C. Li, and T. Guan, “Scaling large production clusters with partitioned
synchronization,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, 2021. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/feng-yihui

[12] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13. New
York, NY, USA: Association for Computing Machinery, 2013.

[13] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil,
G. M. Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga,
“Mercury: Hybrid centralized and distributed scheduling in large
shared clusters,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association, 2015.
[Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/karanasos

[14] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015. [Online]. Available: https://www.usenix.org/conference/atc15/
technical-session/presentation/delgado

[15] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau,
“Ondisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Transactions on Networking,
vol. 27, no. 6, pp. 2472–2485, 2019.

[16] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[17] N. Potu, C. Jatoth, and P. Parvataneni, “Optimizing resource scheduling
based on extended particle swarm optimization in fog computing en-
vironments,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, 2021.

[18] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and collective
deep reinforcement learning for computation offloading: A practical
perspective,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 5, pp. 1085–1101, 2021.

[19] T. Pusztai, F. Rossi, and S. Dustdar, “Pogonip: Scheduling asynchronous
applications on the edge,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), 2021.

[20] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 3, pp. 940–954, 2022.

[21] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding,
and M. Daneshmand, “A survey on the metaverse: The state-of-the-
art, technologies, applications, and challenges,” IEEE Internet of Things
Journal, 2023.

[22] B. Sedlak, I. Murturi, and S. Dustdar, “Specification and operation
of privacy models for data streams on the edge,” in 2022 IEEE 6th
International Conference on Fog and Edge Computing (ICFEC), 2022,
pp. 78–82.

[23] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching lan speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017, pp. 629–647. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

[24] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
2019.

[25] The Kubernetes Authors, “Considerations for large clusters,” 2023-01-
12. [Online]. Available: https://kubernetes.io/docs/setup/best-practices/
cluster-large/

[26] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Comput. Surv., vol. 55, no. 7, 2022.

11

https://www.cl.cam.ac.uk/research/srg/netos/camsas/blog/2016-03-09-scheduler-architectures.html
https://www.cl.cam.ac.uk/research/srg/netos/camsas/blog/2016-03-09-scheduler-architectures.html
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://github.com/docker/swarmkit/blob/master/design/scheduler.md
https://github.com/docker/swarmkit/blob/master/design/scheduler.md
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/atc21/presentation/feng-yihui
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/

[27] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M. Fumarola,
B. Huang, K. Chaliparambil, A. Suresh, Y. Chen, S. Heddaya et al.,
“Hydra: a federated resource manager for data-center scale analytics,”
in 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), 2019.

[28] Verizon, “Ip latency statistics,” 2023. [Online]. Available: https:
//www.verizon.com/business/terms/latency/

[29] S. Nastic, T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, D. Vij, and
Y. Xiong, “Polaris scheduler: Edge sensitive and slo aware workload
scheduling in cloud-edge-iot clusters,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[30] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith,
S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang, “Polaris scheduler: Slo-
and topology-aware microservices scheduling at the edge,” in 2022
IEEE/ACM 15th International Conference on Utility and Cloud Com-
puting (UCC), 2022.

[31] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, 2020.

[32] Santos José, Wauters Tim, Volckaert Bruno, and De Turck Filip,
“Towards network-aware resource provisioning in kubernetes for fog
computing applications,” in 2019 IEEE Conference on Network Soft-
warization (NetSoft), 2019.

[33] Zhao Hailiang, Deng Shuiguang, Liu Zijie, Yin Jianwei, and Dustdar
Schahram, “Distributed redundant placement for microservice-based
applications at the edge,” IEEE Transactions on Services Computing,

vol. 15, no. 3, 2022.
[34] Apache Software Foundation, “Powered by mesos: Organizations

using mesos,” 2022. [Online]. Available: https://mesos.apache.org/
documentation/latest/powered-by-mesos/

[35] K. Karanasos, A. Suresh, and C. Douglas, “Advancements in yarn
resource manager,” in Encyclopedia of Big Data Technologies, S. Sakr
and A. Zomaya, Eds. Cham: Springer International Publishing, 2018,
pp. 1–9.

[36] The Apache Software Foundation, “Apache hadoop 3.3.3: Fair
scheduler.” [Online]. Available: https://hadoop.apache.org/docs/stable/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html

[37] ——, “Apache hadoop 3.3.3: Capacity scheduler.” [Online].
Available: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html

[38] Jing Hui Alex Neo and Lee Bu Sung, “Epsilon: A microservices based
distributed scheduler for kubernetes cluster,” in 2021 18th International
Joint Conference on Computer Science and Software Engineering (JC-
SSE), 2021.

[39] P. Huang, Y. Bai, F. Li, X. Ding, Q. Chen, D. Vij, Du Peng, and Y. Xiong,
“Arktos: A hyperscale cloud infrastructure for building distributed
cloud,” in 2022 IEEE/ACM 15th International Conference on Utility
and Cloud Computing (UCC), 2022.

[40] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A
serverless computing fabric for edge & cloud,” in 2022 IEEE 4th
International Conference on Cognitive Machine Intelligence (CogMI),
2022, pp. 1–12.

12

https://www.verizon.com/business/terms/latency/
https://www.verizon.com/business/terms/latency/
https://mesos.apache.org/documentation/latest/powered-by-mesos/
https://mesos.apache.org/documentation/latest/powered-by-mesos/
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

	Introduction
	Related Work
	Vela 3-Phase Scheduling Workflow
	Vela's Main Scheduling Mechanisms
	2-Smart Sampling
	MultiBind Commit Phase

	Evaluation & Implementation
	Implementation
	Experiments Setup
	Results
	Configuration Tuning
	Scalability with Respect to Infrastructure
	Scalability with Respect to Workload

	Conclusion
	References

