
Entity-Adaptation: A Programming Model for
Development of Context-Aware Applications

Sanjin Sehic, Stefan Nastic, Michael Vögler,
Fei Li, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@dsg.tuwien.ac.at

ABSTRACT
In recent years, new business and research opportunities have in-
creasingly emerged in the field of large-scale pervasive platforms
(e.g., building management systems, pervasive health-care, envi-
ronmental monitoring). These platforms are characterized by the
need to monitor and control a large number of heterogeneous envi-
ronments with significantly different capabilities and utilize many
distributed context sources and actions. Hence, they require ad-
ditional support in terms of programming models and abstractions
that can assist with the development of context-aware applications
as generic and reusable components. Previous research studies in
context-aware systems have proposed many different programming
models, but none of them are enough to support the development
of truly reusable applications.

In this paper, we introduce the Entity-Adaptation programming
model as a novel approach for the development of context-aware
applications. The benefit of the Entity-Adaptation model is that it
decouples context-aware applications from the underlying physical
environments and allows them to be implemented as generic and
reusable components. We additionally present the design and im-
plementation of the CAPA framework, which provides support for
deployment and execution of context-aware applications developed
with the Entity-Adaptation programming model. Finally, we eval-
uate the solution using a case study that demonstrates effectiveness
of the approach in a real-world scenario.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.2.13 [Software Engineering]: Reusable Software

General Terms
Languages, Design

Keywords
Context-awareness, programming model, framework, pervasive sys-
tems, mobile computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the authors must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
SAC 2014, March 24 - 28 2014, Gyeongju, Republic of Korea
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-2469-4/14/03 ...$15.00.
http://dx.doi.org/10.1145/2554850.2555015.

1. INTRODUCTION
Context-awareness is one of the cornerstones of pervasive com-

puting [26, 24]. It refers to the idea that an application can un-
derstand its context, reason about its current situation, and perform
suitable operations based on this knowledge. Moreover, as the situ-
ation changes over time, the application should adapt according to
the new circumstances and use new context information to decide
which new actions need to be performed. This dynamic adapta-
tion of context-aware applications provides a level of automation
that can free users from unnecessary manual labor. For example,
context-aware applications in smart-homes can unobtrusively sup-
port automatic lightning and heating based on user preferences and
current context information like luminosity, temperature and user
location.

Recent years showed emerging trends in business and research
to utilize large-scale, distributed pervasive platforms. Examples of
such trends are building management systems, pervasive health-
care, city traffic scheduling, environmental monitoring, and smart
grids. These platforms differ significantly from the conventional
context-aware systems that focus on a limited personal context in
relatively controlled environments (e.g., smart homes and offices).
They are characterized by the need to monitor and control a large
number of heterogeneous environments with significantly different
capabilities and utilize many, distributed context sources and ac-
tions. Because of the size and complexity of such a platform, it
is not feasible to develop a separate context-aware application that
is specifically suited for each physical environment where it is de-
ployed. Hence, these platforms require additional support in terms
of programming models and abstractions that can assist with the
development of context-aware applications as generic and reusable
components.

Previous research studies in context-aware systems have pro-
posed many different programming models for the development
of context-aware applications. These programming models sup-
port hiding the heterogeneity of context sources [6, 11, 15, 10, 25],
defining processing schemes [6, 25], and dealing with mobility [6,
11, 10], privacy [15] and scalability [6, 11, 25]. Unfortunately,
none of the them are sufficient to support the development of truly
reusable applications that can work in many, heterogeneous envi-
ronments. The fundamental problem of all these approaches is that
information of what is expected from a physical environment is im-
plicitly coded in the application. They either expect that all physical
environments are identically configured and provide same context
information and actions or that users will manually check that all
necessary prerequisites for the physical environment are satisfied
before executing an application. Thus, for large-scale pervasive
systems none of these programming models provide an adequate
solution. Instead, a programming model has to allow applications

436

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2554850.2555015

to explicitly state which context information and actions they ex-
pect from a physical environment. As a result, the context-aware
system will be able to automatically validate that an application
will work correctly in a physical environment and customize it to
the environment and user needs.

In this paper, we present the Entity-Adaptation programming
model that provides support for the development of reusable context-
aware applications. The core idea behind the programming model
is based on the concept of entities as a specification that describes
which context information and actions are expected from objects
(e.g., an area, lights or a person) in an environment. Entities pro-
vide an universal programming interface on top of which adapta-
tions can be defined instead of them being implemented to directly
use concrete context sources and actuators. Hence, context-aware
applications become reusable components that can work correctly
in many, heterogeneous environments. Furthermore, we present
the design and implementation of the Context-Aware Programming
frAmework (CAPA) that provides support for deployment and ex-
ecution of context-aware applications developed using the Entity-
Adaptation programming model.

The rest of the paper is organized as follows. The next sec-
tion describes the challenges in developing context-aware applica-
tions and summarizes requirements that emerge out of these chal-
lenges. In Section 3, we introduce the Entity-Adaptation program-
ming model. The design and implementation of the CAPA frame-
work is discussed in Section 4. Afterwards, Section 5 presents a
case study and Section 6 examines the related work. Finally, Sec-
tion 7 concludes the paper.

2. CHALLENGES
To better understand all challenges associated with the devel-

opment of context-aware applications, let us consider applications
that are responsible for monitoring and controlling an environment.
In general, context-awareness refers to the idea that an application
can understand its context and adapt its behavior based on infor-
mation gathered from the environment without an explicit user in-
tervention. Thus, such applications would use context information
to determine the current state of the environment, store user pref-
erences in order to better understand the current situation in the
environment, invoke some context actions to adapt its behavior and
optionally notify the user or update an user interface (Figure 1). An
appropriate use-case would be an application for automatic control
of ambient temperature. This application determines when and for
how long to turn on heating and cooling (actions) based on current
temperature (context information) and desired temperature range
(user preference). Next, we will present four challenges associated
with the development of such a context-aware application.

Since instances of a context-aware application will monitor and
control heterogeneous physical environments, this provides us with
a hint to the first challenge. If we consider different environments,
applications will a) depend on different techniques for context
information to be gathered from heterogeneous sensors, b) be re-
quired to adapt differently to the current situation based on varying
user preferences, and c) invoke different actuators through context
actions. To cope with such heterogeneity, developers of context-
aware applications will need dedicated programming abstractions
to hide this intrinsic complexity by creating a loose coupling be-
tween the environment and the application. As such, these abstrac-
tions will have to provide a programming tool to develop context-
aware applications using environment-agnostic terms to permit reuse
of applications in heterogeneous environments and hence increase
their reusability and maintainability. However, this creates a mis-
match between programming abstractions that are used during the

Context-Aware

Application

C
o
n
te

x
t

In
fo

rm
a
ti

o
n

C
o
n
te

x
t

A
c
ti

o
n
s

User Preferences

Notifications &

User Interface

Figure 1: Context-Aware Application

development and context sources and actuators that are used dur-
ing the execution. Thus, the underlying context-aware system will
be required to associate appropriate context sources and actuators
to the programming abstractions before the application can work
correctly.

The second challenge in development of context-aware applica-
tions arises when we consider how context information is provi-
sioned. More specifically, the context information originates from
the outside of the control of the applications. This means that
context-aware applications are not able to actively notice changes
in the context information. With regard to this drawback, there are
two possible models to overcome this challenge: polling and push-
ing. With the polling model, the context information has to be con-
tinuously read in predetermined intervals and sent to applications
if the information has changed based on the previously read value.
With the pushing model, a source of context information can no-
tice changes in the context information and thus is responsible with
sending the new context information to applications. Nevertheless,
both models require that the underlying context-aware system asyn-
chronously provisions new context information to applications.

The third challenge arises from expectation of latest use-cases.
It is not enough anymore to collect context information from a sin-
gle environment like smart home or office as in many previously
proposed systems [10, 3, 5, 16]. Instead, we need to allow con-
text information to come from multiple, distributed environments
to allow even higher effectiveness of context-aware applications.
For example, the automatic ambient temperature control can take
advantage of the user location that is collected from a smartphone
and use it to calculate the estimated time of the arrival. This in-
formation together with the information about the required heating
duration allows us to determine if it is at all necessary to immedi-
ately turn on heating even when the current temperate is outside the
desired temperature range. This context can potentially minimize
unnecessary heating and cooling when user is not at home. Fur-
thermore, we can also include information from electric company
about future fluctuation of electricity prices. The application can
then determine the cheapest strategy to heat or cool the home. For
example, we can slightly overheat the home during the daily low
price hours and hence be more cost-effective. However, we can-
not expect that context-aware applications should be responsible in
creating and managing distributed environments. This task must be
responsibility of the underlying context-aware system. From the
perspective of applications, local and remote context information
and actions are indistinguishable.

Lastly, the final challenge emerges from a requirement that users
should be able to customize their environments to their needs and
expectations by deciding how context-aware applications interact

437

with their environments. For example, we should be able to easily
configure the application for the control of ambient temperature to
indirectly monitor location of multiple users by provisioning only
the location of the closest user to the application (i.e. determining
minimum distance from home for set of locations). From the per-
spective of a context-aware application, this way of provisioning
the location of multiple users should be identical to using location
of single user and hence not influence its execution in any meaning-
ful way. However, this requires that the underlying context-aware
system allows users to determine how context sources and actuators
are used by the application in their environments. Furthermore, it
should also allow users to change this configuration during the ex-
ecution of the application without its disruption.

To summarize, based on the these challenges a context-aware
solution has to satisfy these four requirements:

• Requirement 1: Context-aware applications have to be devel-
oped using dedicated programming abstractions that provide
an environment-agnostic interface. This allows applications
to be developed as generic and reusable components that can
work correctly in many, heterogeneous environments.

• Requirement 2: The context-aware system must provision
new context information to applications in an asynchronous
fashion so they can adapt their behavior and control the en-
vironment. This requirement is a consequence of the fact
that context information originates outside of the control of
context-aware applications.

• Requirement 3: The context-aware system has to provision
context information and actions from many, distributed en-
vironments. This requirement can lead to increase in the ef-
fectiveness of context-aware applications by providing them
with even more context to use for adaptations than they could
only get from local context.

• Requirement 4: Users of the context-aware system have to
be able to configure how context-aware applications inter-
act with their environments. This enables them to customize
their environments to their needs and expectations.

3. THE ENTITY-ADAPTATION MODEL
The core concept of the Entity-Adaptation programming model

are entities as commonly defined in the context-awareness research
field. More formally, “an entity is a person, place, or object that
is considered relevant to the interaction between a user and an ap-
plication, including the user and applications themselves.” [9] In
the programming model, we define an entity as a specification that
describes which context information and actions are expected from
an object (e.g., an area, lights, web service or a person) in an envi-
ronment. Thus, the set of all entities that are defined in a context-
aware application provide the full description of requirements for
an environment. The main purpose of entities is to allow context-
aware applications to be implemented in an environment-agnostic
manner. This allows developers to freely define all entities neces-
sary for the correct execution of the application and to implement
adaptations on top of them instead of concrete context sources and
actuators. More precisely, they provide an universal programming
interface for monitoring and controlling an environment in context-
aware applications.

During development of a context-aware application, developers
can freely define any number of entities. Each entity is associ-
ated with a name, properties, and actions. The name of an entity

allows differentiation of one entity from another. Furthermore, it
can help during the deployment of the application to provide users
with a meaning for the entity so they can easily choose which con-
text sources and actuators to associate with them. Properties in
an entity represents a context information associated with this en-
tity. They can either be abstract or concrete. An abstract prop-
erty provides a description of the context information by defining
a name and type. During the deployment of the application, each
abstract property will be associated with a concrete context source
or a static value that matches this description. On the other hand,
a concrete property is defined on top of other properties and pro-
vides a computation that creates a higher-level context information
using the context information from underlying properties. Thus,
concrete properties can be used to model situations in which the
entity is currently in. Actions in an entity represent actuators that
can be executed in an environment. They can either be abstract or
concrete as well. An abstract action provides a description of an
actuator by defining a name and a type for its argument. During
the deployment of the application, each abstract action will be as-
sociated with a concrete actuator that matches this description. A
concrete action defines necessary arguments for the action and is
implemented on top of other actions that are appropriately invoked
based on the specified arguments.

Because user preferences can be seen as additional context in-
formation, we model them as a configuration entity associated with
necessary properties. This way, the application can use same mech-
anism to access properties and context information and hence sim-
plify its design. Furthermore, this allows users instead of just set-
ting preferences as static values to potentially associate these prop-
erties to concrete context sources like databases, outputs of other
applications and so forth.

val state =
property[State]

(area("temperature"),
conf("temperature")) {

case (current, (min, max)) =>
if (current < min) COLD
else if (current > max) HOT
else OK

}
val change =
action[(State, Range)] {
case (state, (min, max)) =>

if (state == COLD)
area.exec("heat", max)

else if (state == HOT)
area.exec("cool", min)

}

val area = entity("area")
.hasProperty[Float]("temperature")
.hasProperty("state", state)
.hasAction[Float]("heat")
.hasAction[Float]("cool")
.hasAction("change", change)

val user = entity("user")
.hasProperty[Location]("location")
.hasProperty("distance")(haversine)
.hasAction[String]("notify")

val conf = entity("configuration")
.hasProperty[Location]("home")
.hasProperty[Range]("temperature")

Listing 1: Definition of Entities

438

To demonstrate this, in Listing 11 we define entities required by
an application to control the ambient temperature. This example
shows creation of three entities: area, user, and configuration.
The area entity has one abstract property temperature and one
concrete property state, which uses information about the cur-
rent temperature from the area entity and the range of desired
temperature from the configuration entity to compute if current
temperature is COLD, HOT, or OK. Furthermore, the area entity has
two abstract actions, namely heat and cool that both require one
Float argument representing the desired temperature that should
be reached and one concrete action change that based on the cur-
rent state determines and executes either the heat or the cool

actions with the desired maximal or minimal temperature respec-
tively. The user entity, has one abstract property location and
one concrete property distance, which uses the home location
from the configuration entity to determine how far is the user
from the home location using the Haversine formula2. Moreover,
the user entity has one abstract action notify that allows the ap-
plication to send a textual message to the user in case of a problem
with heating and cooling.

After entities are defined in a context-aware application, the adap-
tations can be implemented on top of them. Each adaptation de-
fines, which properties it is monitoring for change and based on the
new context information determines which actions needs to be exe-
cuted. This design is identical in nature to Model-View-Controller
(MVC) software design pattern. In our case, properties are equiv-
alent to models, actions to views, and adaptations to controllers.
Changes in context information trigger invocation of adaptations
which based on the current context information in entities deter-
mine which actions to invoke and pass them appropriate arguments.
Hence, we named our programming model for the development of
context-aware applications as Entity-Adaptation.

onChange(area("state"),
user("distance"),
conf("temperature")) {

case (state, location, range) =>
if ((distance < 1000.meters)

&& (state != OK)) {
change(state, range)

}

Listing 2: Adaptation

Lastly, an example of an adaptation is shown in Listing 2. We use
the onChange method that will monitor changes in given properties
and executes specified computation. In our case, the adaptation
monitors changes in user’s distance from home and state. If user
is less than 1000 meters away from home and state is not OK, the
adaptation will invoke the change action, which consequently will
determine if heating or cooling is necessary.

4. The CAPA framework
In this section, we will present the design and implementation of

the CAPA framework. The main responsibility of the CAPA frame-
work is to provide support for the deployment and execution of
context-aware applications developed using the Entity-Adaptation
programming model. Figure 2 shows the overview of the CAPA
framework and its position in relation to context-aware applications
and the underlying infrastructure.
1All examples are written in the Scala programming language.
2The Haversine formula returns the distance between two points on
a sphere from their longitudes and latitudes.

S A

G

S

A

G

A

Infrastructure

• Gateways

• Sensors

• Actuators

• System

• Origins

• Actions O

A

O

O

A

Framework

Application E
E

E

Repository

Discovery Authorization

• Entities

Figure 2: The CAPA framework

4.1 Asynchronicity
In context-aware systems, context changes in an environment are

observed as external asynchronous events. Therefore, we designed
the CAPA framework on top of the programming paradigm offered
by the Actor Model [13, 1] and futures [12, 18].

The Actor Model provides the abstraction for transparent distri-
bution of concurrent computations [1]. In the Actor Model, an ac-
tor is a universal primitive to represent concurrency [13]. It reacts
to messages from the outside by sending other messages, creating
new actors and changing its behavior. In the CAPA framework,
actors provide a foundation for event-driven reacting to context
changes in environments. They allow in a natural way to asyn-
chronously deliver context information as events by sending and
receiving messages between actors. Context changes can still be
gathered using polling and pushing techniques inside the CAPA
framework, but as soon as a change is detected it becomes a mes-
sage in the Actor Model, which is then furthered processed and en-
riched with meta-information by actors in the asynchronous fash-
ion. Furthermore, the CAPA framework executes each context-
aware application inside an actor which receives context changes,
executes its adaptations and sends context actions to appropriate ac-
tuators. This alleviates necessity to use synchronization and thread-
locking primitives in the application. Thus, developers can focus
on implementing correct adaptations of behavior in their context-
aware applications without worrying about asynchronous nature of
context events.

On the other hand, a future represents “a promise to deliver the
value” [12]. This mechanism allows consumers of futures to con-
tinue with the execution of other tasks and use the result when it
is available in the asynchronous fashion. Moreover, an interesting
aspect of futures is that it enables the promise pipelining [18]. This
concept allows futures and processing operations to be composed in
a parallel and asynchronous manner into new futures, which can be
further processed and/or consumed. Futures and promise pipelin-
ing provides a very powerful mechanism for distributed systems
to overcome latency and unreliability of communication [18]. In
the CAPA framework, they provide a programming technique to
asynchronously retrieve context information, which can possibly
require communication with remote and unreliable servers. For ex-
ample, when in the application that controls ambient temperature
an unfavorable change in the temperature is detected, the CAPA
framework still has to retrieve the current location of the user from

439

his smartphone, which might not even be connected to internet,
before both pieces of context information can be delivered to the
application. In this case, the location information is represented as
a future that will be sent together with the current ambient tempera-
ture when it is available. This allows the CAPA framework to easily
model timeouts, retry and failure logic for each retrieval of context
information and thus help us with uncertainty in communication
between remote and distributed systems. In the aforementioned
case, when location information is not available, the application is
still invoked with context information that has no location informa-
tion and hence it can decide how to proceed with the controlling of
the ambient temperature.

4.2 Origins and Actions
To support the provisioning of context information in the CAPA

framework, we use the Origins model presented in our previous
work [25]. The Origins model is a programming model for the de-
velopment of context-aware applications in large-scale, distributed
pervasive systems. Its design allows a pervasive system to pro-
vide a flexible infrastructure for the execution of context-aware ap-
plications and to easily scale with the increase in the number of
applications. The core idea in the Origins model is that origins
provide an adequate abstraction to represent any type of context
source like sensors, web services, databases, files, but also com-
positions of other origins. They are universal, discoverable and
composable components that are associated with name, type and
meta-information. Based on the origins, four processing operations
are defined, namely filtering, inference, aggregation, and composi-
tion, that provide a powerful mechanism to express a rich set of
processing schemes for context information.

In the CAPA framework, we extend the concept of origins with
the additional push-based communication mechanism to support
fully asynchronous, reactive programming. Moreover, we imple-
ment the concept of actions as an actuating counterpart to origins
to create a full-fledged programming support for monitoring and
controlling of physical environments. Actions provide an universal
interface to execute operations in an environment. They can invoke
the execution of actuators, applications, and remote systems. The
actual mechanism that an action uses to invoke these operations is
irrelevant for context-aware applications and is hidden from them.
This allows reusability in applications because actual implementa-
tions of actions can be different in different physical environments
but applications can still use them as an universal component that
can be invoked. Furthermore, actions can be implemented to be
context-aware. This functionality allows actions to determine their
own behavior based on the current context information and adapt
to changes in the environment. We distinguish three cases where
context information can be used to improve the functionality of ac-
tions: a) determining arguments/settings for the environment op-
erations, b) adapting to changes in the environment, and c) defining
end-condition for long-running operations. For example, the action
to heat some physical environment can depend on the current tem-
perature to determine the necessary power setting of the heater and
to end heating when desired temperature range has been reached.
Thus, actions are allowed to use origins to properly function and
determine how, when and which operations need to be executed
in the environment. Finally, like origins, actions can be reused in
other actions and composed together to provide more fine-grained
actions. For example, we can define a sequence of actions that
should be executed sequentially or a set of actions that should be
executed in parallel. This mechanism of composing actions in any
particular fashion provides a very powerful method to implement
execution schemes.

4.3 Handling Distribution
A system component in the CAPA framework represents a vir-

tual environment consisting of one or more physical environments
that can be monitored and controlled. Its main responsibility is to
allow access to context sources through origins and invoke context
operations through actions. Furthermore, it provides a deployment-
time and run-time support for a context-aware application by bind-
ing entities with concrete origins and actions, executing the appli-
cation after all bindings are fulfilled and allowing these bindings to
change during the execution of the application. Each instance of
a system consists of three subcomponents: authorization, discov-
ery, and repository. The authorization component is responsible
for managing and controlling access rights to the system. The dis-
covery component is responsible for finding context sources and
actuators in the underlying physical environments. The repository
component provides support to create, update, and remove origins
and actions in the system. Thus, it allows users to create additional
higher-level origins that depend on other, lower-level origins. For
example, user can create another location origin that returns the
distance of the closest user from his/her home.

In the CAPA framework, we distinguish between three types of
systems: local, view, and composite. A local system is a system
that directly communicates with context sources and actuators. Its
main responsibility is to allow users to manage origins and actions.
Furthermore, any local system can be accessed remotely by allow-
ing other, remote systems that have proper authorization to access
its origins and actions. An example when this functionality can be
used is when a system that is deployed on user’s smartphone is re-
motely accessed by a system deployed in his/her home so the home
system can access the location information and send user notifica-
tions. A view system is a special case of a local system that repre-
sents a partial view of origins and actions in the local system that
can be used to grant separate authorization rights to the view and
not whole local system. For example, this allows us to have one
major local system for a smart building, which consists of many
minor view systems for each apartment and office in the building.
Each view systems grants its occupants rights to execute context-
aware applications for monitoring and controlling of only this par-
ticular apartment or office without them having the same right for
the building system. Finally, a composite system allows us to com-
pose one or more local or remote systems into one system that pro-
vides access to all underlying origins and actions and allows de-
ployment and execution of context-aware applications. Hence, the
composite system provides necessary support to create distributed
systems that can span many physical environments.

4.4 Deployment & Configuration
When a context-aware application is deployed in a system by a

user, the first task of the system is to try and find suitable origins and
actions for each abstract property and action in the application’s
entities. Therefore, we devised a binding algorithm (Listing 3) to
help users with the deployment of context-aware applications.

The search process in the binding algorithm is similar to the web
service discovery mechanisms [8, 21]. It uses the type information
from definitions of properties and actions in an entity to find con-
crete origins and actions that have same type (lines 5 and 12). If
the search process is not able to find a suitable origin or action it
returns with an error (lines 6 and 13). Furthermore, if there is more
than one suitable origin or action definition, the definition is stored
in an unresolved collection as it will require a manual intervention
from the user by allowing him/her to manually select appropriate
origin and action from the list of suitable ones (lines 9 and 16).
Otherwise, if only one suitable origin or action is found, the system

440

1 def bind(app: Application, sys: System) {
2 for (entity <- app.entities) {
3 val unresolved = Vector.empty
4 for (p <- entity.properties) {
5 val origins = sys.origins.findAll(p.type)
6 if (origins.isEmpty) return error(p)
7 if (origins.size == 1)
8 entity.bind(p, origins(0))
9 else unresolved += (p, origins)

10 }
11 for (a <- entity.actions) {
12 val actions = sys.actions.findAll(a.type)
13 if (actions.isEmpty) return error(a)
14 if (actions.size == 1)
15 entity.bind(a, actions(0))
16 else unresolved += (a, actions)
17 }
18 if (!unresolved.isEmpty)
19 entity.bind(manualBind(unresolved, sys))
20 }
21 }

Listing 3: The binding algorithm

will bind it with the entity (lines 8 and 15). At the end, if the search
process did not find all suitable origins and actions, the system will
ask the user to choose from a list appropriate origins and actions
that should be used by the entity (line 18–19).

Finally, because all bindings between entities in a context-aware
application and concrete origins and actions in a system are cre-
ated and controlled by the system, we can easily allow changing of
individual bindings without restarting the application. Thus, users
can install a new sensor or change an old one and afterwards easily
reconfigure context-aware applications to use the new sensors.

4.5 Implementation
The CAPA framework is implemented in the Scala program-

ming language3. Scala is a general-purpose programming language
that integrates features of object-oriented and functional program-
ming paradigms. It runs on the Java Virtual Machine (JVM) and is
byte-code compatible with Java applications. We choose to imple-
ment the CAPA framework in Scala because of its flexible syntax
that allows us to easily create domain-specific languages inside the
language and package them as libraries. Furthermore, the CAPA
framework was developed as a set of reusable components using
design concepts described by Odersky and Zenger [20]. This tech-
nique allows the CAPA framework to be reprogrammed with mini-
mal changes to its system component and deployed on top of differ-
ent infrastructures like Wireless-Sensor Networks (WSN), Internet
of Thing (IoT) systems, ubiquitous/pervasive platforms, and even
other context-aware middlewares.

In the CAPA framework, we use the Akka toolkit4 as an im-
plementation of the Actor Model and futures. Akka provides a
platform to build highly concurrent, distributed, and fault-tolerant
event-driven applications. Beside its implementation of actors and
futures, we use Akka for its transparent remoting and clustering
capabilities, which help us with accessing remote systems (trans-
parent remoting) and creating distributed composite system (clus-
tering).

5. CASE STUDY
As a case study for the CAPA framework, we integrated it as

a part of a building management system which is responsible for
3http://www.scala-lang.org/
4http://akka.io/

managing over 10000 buildings with each one having in average
300 sensors and actuators. In this deployment, the building man-
agement system uses one Niagara gateway5 per building to provide
a single point of access to sensors and actuators in the building. We
use the Niagara gateway as the underlying infrastructure on top of
which a system component is deployed. Thus, a single gateway
creates a single virtual environment which can be monitored and
controlled by a context-aware application. The system’s discov-
ery component communicates with the gateway using oBIX stan-
dard [19]. The oBIX standard provides the concept of points that
represent a single scalar value as an abstraction for sensors and
actuators in a physical environment. The oBIX discovery compo-
nent instantiates one origin or action for each point in the system
depending if it is sensor or actuator. Furthermore, we deployed
additional origins and actions that utilized origins and actions dis-
covered by the oBIX discovery component.

As part of our case study, we implemented the aforementioned
context-aware applications for the control of ambient temperature
(Listings 1 and 2). The first system provided access to a temper-
ature sensor and to an AC unit that were both connected to a Ni-
agara gateway. The second system was deployed as a background
service on an Android device, which accessed the device’s location
information through its GPS sensor. By combining these two sys-
tems into a composite system, we executed the application which
managed to adapt and control the AC unit using the temperature in-
formation from the gateway and the location information from the
Android device.

During the case study, we dealt with many situations where a
smartphone was not able to send the current user location due to
the lack of Internet connection. The uncertainty and volatility of
communication is an everlasting challenge in distributed system. In
this regard, the concept of futures helped significantly by allowing
us to easily model timeouts, retry and failure logic without blocking
the execution of the CAPA framework in the process. Furthermore,
during the implementation of the case study, we also observed a
shortcoming of the binding algorithm (Listing 3) with respect to
creating entities for temporary objects. This type of entities are
transiently created and destroyed by the framework. They allow
monitoring and controlling objects in a context-aware application
that are temporarily in the environment (e.g., guests, workers). The
shortcoming arises when the algorithm requires a manual interven-
tion from the user, which is unsuitable in this situation. Therefore,
we plan to extend the binding algorithm with the semantic reason-
ing to help it overcome the manual binding step.

6. RELATED WORK
Prior research studies in programming models for development

of context-aware applications were suitable only for small and static
environments like smart homes or offices. Not much effort was put
into providing a programming models that allows context-aware
applications to be reusable between many different systems and
environments. As such, there is a significant gap between the vi-
sion of the context-awareness in pervasive computing from [26, 24]
and the previously proposed context-aware programming models.
A detailed analyses of previous context-aware approaches appear
in [2, 4, 22]. In this section we will review some of these previous
approaches and compare them to the CAPA framework.

The Context Toolkit provides a programmatic support for the de-
velopment of context-aware applications [10]. The Context Toolkit
incorporates various services related to gathering and provisioning
of context information, including encapsulation of context, access

5http://www.tridium.com/

441

http://www.scala-lang.org/
http://akka.io/
http://www.tridium.com/

to context information, storage, and a client-server infrastructure.
The central idea of the system is borrowed from GUI (Graphical
User Interface) toolkits and widget libraries that create reusable
building blocks and hide specifics of physical system. Thus, con-
text widget represents a dedicated component that is responsible
for acquisition of context information directly from sensors. Wid-
gets can then be further combined using interpreters to provide
higher-level context information or with aggregators that group re-
lated context information. Finally, the toolkit provides a concept
of services, which are responsible for invocation of actuators. Al-
though origins have some similarity with context widgets, they ad-
ditionally provide support for composition that context toolkit does
through interpreters and aggregators. Thus, origins can be consid-
ered as a more general concept than widgets, interpreters and aggre-
gators. Furthermore, context toolkit does not provide any concept
equivalent to entities and as such cannot fully support the concept
of reusable, context-aware applications (Requirement 1). Finally,
it lacks any support to handle distributed environments (Require-
ment 3).

JCAF is a Java-based service-oriented run-time infrastructure
and API for the creation of context-aware applications [3]. The
JCAF run-time infrastructure emphasizes security and privacy in
an environment of distributed and cooperating services that acquire
context information through Context Monitors and Context Actu-
ators. It enables interested applications to subscribe to relevant
context events through an event-based publish-subscribe mecha-
nism. The JCAF programming model provides programmers with
tools to create context-aware applications that are deployable in
the JCAF infrastructure. The programming model consists of the
remotely-accessible API through Java Remote Method Invocation
(RMI) for the context services, the model for context information,
and the event-based infrastructure. Although their programming
model standardizes development of context-aware applications, it
also lacks an abstraction equivalent to entities as a specification of
what an application expects from an environment (Requirement 1).
More specifically, an application can be deployed and executed in
an environment that is missing some required context information
or actions. Hence, the application will not be able to work properly
and user will not be able to know why this happened (Require-
ment 4).

Solar [5] distinguishes that applications typically need high-level
context rather than raw sensor data and that high-level context in-
formation can be derived by aggregating data from one or more
sensors. Hence, its aim is to make possible to offload this com-
putation from the end-user application device into the middleware,
running on one or more servers that host the Solar software. In
the system, applications compose data flows, rather than interact-
ing directly with context sources. They instruct Solar on which
sensor to use and how the sensor data should be aggregated into
desired context. Solar uses the filter-and-pipe software architec-
tural pattern for data-stream oriented processing, which supports
reuse and composition naturally. In the CAPA framework, instead
of an application explicitly stating how to aggregate and compose
context information, we allow creation of composite origins in a
system which can be reused by many applications. Thus, appli-
cations developed for many heterogeneous, physical environments
do not have to implement possibly many different ways of gener-
ating higher-level context information (Requirement 1). Further-
more, Solar lacks the support for context actions (Requirement 1)
and requires processing schema to be hard-coded in the applica-
tion logic, which prohibits the user configuration of context-aware
applications (Requirement 4).

Toolkit JCAF Solar C-CAST COP CAPA
Req. 1 P Y P P Y Y
Req. 2 Y Y Y Y Y Y
Req. 3 N P Y P N Y
Req. 4 P P N Y N Y

Table 1: Comparison of Context-Aware Approaches

More recently, there has been research in developing a broker-
based programming model for context-aware systems [6, 16, 17].
For example, the Context Casting (C-CAST) [16] project proposes
a broker-based context-provisioning system that is supported by the
publish-subscribe mechanism. Components in C-CAST take role
of either a context provider or a context consumer. The task of the
context broker is to hold registrations of all context providers and
offer it as a directory service for context consumers. The broker-
based approaches provide a right step towards reusable, context-
aware applications by allowing them to discover context providers
at run-time. However, all of the proposed approaches lack any sup-
port for actuators (Requirement 1). Furthermore, the broker-based
approaches rely on the centralization of the knowledge of the whole
system in the context broker. Hence, the context broker must medi-
ate almost all communication between context consumers and pro-
ducers, which inherently limits the ability of the system to scale
with increasing number of applications (Requirement 3).

Context-oriented programming [14] (COP) has emerged in re-
cent years as a complementary approach for supporting context-
aware adaptations. The primary idea in COP is to provide pro-
gramming abstractions that support context-adaptability in appli-
cations. It focuses on modularizing behavioral variations and sup-
porting dynamic activation of these variations during the run-time.
Behavioral variations is a unit of behavior that (partially) modifies
the behavior of the application. It is enabled by means of a vari-
ation activation. Over the years, many different COP approaches
were proposed [14, 7, 23] with majority of them based on a pro-
gramming concept of layers [7]. They mainly focus on allowing
self-adaptation in applications through usage of context informa-
tion. Thus, they typically implement the context-aware behavior as
an orthogonal concern that crosscuts main functionality of an ap-
plication similarly to aspect-oriented programming (AOP). On the
other hand, the CAPA framework focuses on supporting context-
aware monitoring and controlling of physical environments. Thus,
the COP approaches are more concerned on “internal” adaptations
in software rather than “external” adaptations in physical world
(Requirements 3 and 4).

Table 1 provides a comparison of aforementioned context-aware
approaches with respect to requirements stated in Section 2. In the
table, Y represents that an approach fully supports a requirement, P
that it partially supports the requirement, and N that it does not sup-
port the requirement. Compared to all other approaches, the CAPA
framework is the only one that fully implements all necessary re-
quirements.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the Entity-Adaptation programming

model and the CAPA framework as an adequate solution for de-
veloping, deploying, and executing context-aware applications as
generic and reusable components. We started with challenges asso-
ciated with the development of context-aware applications and enu-
merated requirements for a context-aware solution. Based on these
requirement, we first introduced the Entity-Adaptation program-

442

ming model. The programming model uses a concept of entities
to define a specification that describes objects in an environment
and allows adaptations to be implemented on top of these entities
in an environment-agnostic manner. Later, we explained the design
and implementation of the CAPA framework that provides support
for deployment and execution of context-aware applications devel-
oped with the Entity-Adaptation programming model. We showed
how the programming model and framework fully implement all
necessary requirements. Finally, we presented a case study that
demonstrates effectiveness of our solution in a real-world scenario.
For future work, we will first investigate semantic reasoning for the
binding algorithm to help us overcome the manual interventions.
We will also examine how functional reactive programming can
further ease the development of context-aware applications. Fi-
nally, we plan to integrate privacy and security concerns into the
CAPA framework.

8. ACKNOWLEDGMENTS
This work is supported by Pacific Controls Cloud Computing

Lab6 (PCCCL) — a joint lab between Pacific Controls LLC, Sheikh
Zayed Road, Dubai, United Arab Emirates and the Distributed Sys-
tems Group of the Vienna University of Technology.

9. REFERENCES
[1] G. A. Agha. ACTORS: A model of concurrent computation

in distributed systems. Technical Report AITR-844, MIT
Artificial Intelligence Laboratory, June 1985.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. Int. Journal of Ad Hoc and
Ubiquitous Computing, 2(4):263–277, June 2007.

[3] J. E. Bardram. The java context awareness framework
(JCAF) — a service infrastructure and programming
framework for context-aware applications. In 3rd Int. Conf.
on Pervasive Computing, pages 98–115. Springer Verlag,
2005.

[4] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini. A
survey of context data distribution for mobile ubiquitous
systems. ACM Computing Surveys, 44(4):24:1–24:45,
August 2012.

[5] G. Chen, M. Li, and D. Kotz. Data-centric middleware for
context-aware pervasive computing. Pervasive and Mobile
Computing, 4(2):216–253, April 2008.

[6] H. Chen, T. Finin, and A. Joshi. Semantic web in the context
broker architecture. In 2nd IEEE Int. Conf. on Pervasive
Computing and Communications (PerCom’04), pages
277–286, 2004.

[7] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: An overview of contextl. In
Symp. on Dynamic languages, pages 1–10. ACM Press,
2005.

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the web services web: An
introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2):86–93.

[9] A. K. Dey and G. D. Abowd. Towards a Better
Understanding of Context and Context-Awareness. In 1st Int.
Symp. on Handheld and Ubiquitous Computing, pages
304–307. Springer-Verlag, 1999.

[10] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping

6http://pcccl.infosys.tuwien.ac.at/

of context-aware applications. Human-Computer Interaction,
16(2):97–166, December 2001.

[11] K. Henricksen, J. Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed
context-aware systems. In Confederated Int. Conf. on On the
Move to Meaningful Internet Systems, pages 846–863.
Springer Verlag, 2005.

[12] J. Henry C. Baker and C. Hewitt. The incremental garbage
collection of processes. In Symp. on Artificial Intelligence
and Programming Languages, pages 55–59. ACM Press,
1977.

[13] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
ACTOR formalism for artificial intelligence. In 3rd Int. Joint
Conf. on Artificial Intelligence, pages 235–245. Morgan
Kaufmann Publishers Inc., 1973.

[14] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125—151, March–April 2008.

[15] J. I. Hong and J. A. Landay. An architecture for
privacy-sensitive ubiquitous computing. In 2nd Int. Conf. on
Mobile Systems, Applications, and Services, pages 177–189.
ACM Press, 2004.

[16] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tönjes. A
context provisioning framework to support pervasive and
ubiquitous applications. In 4th European Conf. on Smart
Sensing and Context, pages 93–106. Springer Verlag, 2009.

[17] F. Li, S. Sehic, and S. Dustdar. COPAL: An adaptive
approach to context provisioning. In 6th Int. Conf. on
Wireless and Mobile Computing, Networking and
Communications, pages 286–293. IEEE Computer Society,
2010.

[18] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 260–267, 1988.

[19] OASIS. Open building information exchange oBIX 1.0:
Committee specification, 2006 December.

[20] M. Odersky and M. Zenger. Scalable component
abstractions. In 20th Annual ACM SIGPLAN Conf. on
Object-oriented Programming, Systems, Languages, and
Applications, pages 41–57, 2005.

[21] S. Ran. A model for web services discovery with qos. ACM
SIGecom Exchanges, 4(1):1–10.

[22] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-oriented
programming: A software engineering perspective. Journal
of Systems and Software, 85(8):1801–1817, August 2012.

[23] G. Salvaneschi, C. Ghezzi, and M. Pradella. Contexterlang:
Introducing context-oriented programming in the actor
model. In 11th Annual Int. Conf. on Aspect-oriented
Software Development, pages 191–202. ACM Press, 2012.

[24] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8(4):10–17,
2001.

[25] S. Sehic, F. Li, S. Nastic, and S. Dustdar. A programming
model for context-aware applications in large-scale pervasive
systems. In 8th IEEE Int. Conf. on Wireless and Mobile
Computing, Networking and Communications, pages
142–149, 2012.

[26] M. Weiser. The computer for the 21st century. Scientific
American, 3(3):3–11, February 1991.

443

http://pcccl.infosys.tuwien.ac.at/

