
MADCAT
A Methodology for Architecture and Deployment of

Cloud Application Topologies

Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstraße 8/184-1, 1040 Vienna, Austria

{lastname}@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/

Abstract—The cloud computing paradigm introduces new
possibilities and challenges for application design and deploy-
ment. On-demand resource provisioning, as well as resource
and cost elasticity, need to be considered when realizing large-
scale distributed applications for cloud environments. Current
approaches do not sufficiently address the challenges of efficiently
architecting and deploying cloud applications in a holistic manner
and do not deal with the specific challenges encountered in
cloud infrastructures. In this paper we introduce a methodology
tackling the practical problems encountered when designing
and deploying cloud applications. It enables the structured
creation of cloud-native applications, addressing the complete
application development lifecycle, from architectural design to
concrete deployment topologies provisioned and executed on
cloud infrastructure. By using iterative refinement and seamless
provenance documentation of decisions made in the process,
the methodology eases communication with relevant stakeholders
and enables efficient design and deployment of distributed cloud
applications.

I. INTRODUCTION

Creating large distributed systems is a complex task involv-
ing numerous steps that need to be properly aligned to handle
complex resulting application architectures. Due to the high
number of involved stakeholders, it is imperative to maintain
consistent documentation of business requirements, functional
specifications, application architecture, code artifacts, as well
as infrastructure and deployment models. Furthermore, dif-
ferent stakeholders expect documentation in varying levels of
detail and abstraction that needs to be kept aligned with the
application under development.

In recent years, cloud computing [1] emerged as a popular
approach to host large-scale distributed applications, as op-
posed to purchasing, provisioning and maintaining a dedicated
infrastructure. The utility-driven, on-demand nature of cloud
offerings allows customers to easily and quickly provision
the exact type and amount of resources needed for a given
task. While it enables new possibilities for application design
and management, it also introduces challenges not previously
encountered in traditional application design and development.

Elasticity, one of the fundamental properties of cloud
computing, allows for applications to respond to varying load
patterns by adjusting the amount of provisioned resources
to exactly match their current need, thus minimizing over-
provisioning and reducing hosting costs. In addition to resource

elasticity, the cloud computing paradigm enables additional
elasticity dimensions, such as cost elasticity and quality elas-
ticity [2]. However, application architects need to explicitly
incorporate elasticity concerns in application design to take
advantage of the benefits it offers. Components suitable for
elastic deployment need to be identified and properly modeled
to support a varying number of deployed instances. Although
current research does address the issues of modeling [3]
and monitoring [4] of elasticity properties, architects still
lack a structured methodology to properly integrate elasticity
requirements in application architectures, and need to resort to
published best practices (e.g., [5]) and reference architectures
(e.g., Amazon AWS Reference Architectures1) for design
guidance.

The self-service model of cloud computing has further-
more enabled many different providers to compete in the
same market, allowing customers to conveniently choose from
products by different providers without large upfront invest-
ments. Multiple competing solutions are available to fulfill
a given functional requirement, differing in terms of non-
functional properties such as cost, maintenance effort, perfor-
mance, availability, or other service guarantees. For instance,
multiple possibilities exist to provision a relational database on
cloud infrastructure. Stakeholders can decide to a) provision
bare virtual machines and manage database setup, software
dependencies, replication, and backup themselves; b) use
ready-made virtual appliances that, while still requiring proper
configuration, alleviate the need for software installation and
dependency management; or c) use one of many database as
a service (DBaaS) offerings (e.g., Amazon RDS2, ClearDB3,
or EnterpriseDB4) that are fully managed by the provider.
Depending on the application that is developed, each of these
options might be desirable.

Application architects and system operators need to be
able to effectively weigh advantages and disadvantages of
offered solutions to make optimal decisions for the problem
at hand. This calls for a structured approach to model this
decision process [6]. Currently, stakeholders need to study
product descriptions and manuals to gather necessary infor-
mation about functional, operational and managerial details

1http://aws.amazon.com/architecture
2http://aws.amazon.com/rds/
3http://www.cleardb.com
4http://enterprisedb.com

2014 IEEE 8th International Symposium on Service Oriented System Engineering

978-1-4799-3616-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SOSE.2014.9

13

of available offerings and hence lack an organized way of
capturing relevant data for reuse.

The dynamic, utility-oriented nature of the cloud com-
puting paradigm furthermore enables architectural agility that
is not feasible when using traditional application deployment
techniques. Application architectures can dynamically evolve
along with application requirements without leading to large
upfront costs for purchasing and provisioning infrastructure.
This allows for agile evolution in all phases of the application
development lifecycle [7] without causing unnecessary oper-
ating expenses by enabling continuous deployment even after
architectural changes to the application. Traditionally, iterative
and agile software development methods, such as the Rational
Unified Process [8] or Scrum [9], mainly focus on the develop-
ment process but do not explicitly address the importance of
maintaining proper software architecture. Practitioners today
require a method for realizing large software projects that
incorporates iterative development and evolution of not only
code but also application architecture and its building blocks,
tailored to cloud environments.

The challenges outlined above call for a methodology
addressing the complete application development lifecycle for
large cloud applications, from a) architectural modeling,
b) technical realization, and c) deployment structure to d) ac-
tual deployment artifacts, along with e) structured documen-
tation of relevant decisions made by stakeholders. Different
technical levels of stakeholder expertise need to be taken into
account for produced documentation by providing high-level
views of the application architecture to executive stakeholders
but also offering detailed technical views and deployment
topologies for technical staff. Furthermore, cloud-specific chal-
lenges such as multi-dimensional elasticity must be intrinsi-
cally supported to enable reliable, sustainable, and maintain-
able applications for cloud environments. Such a method will
also cater to the dynamic deployment models made possible
by cloud computing by incorporating the agile principle of
“deferring decisions to the last responsible moment” [10] to
minimize risks of requirements creep [11], feature creep [12],
and premature optimization [13]. As discussed in Section II,
there is currently no approach that tackles the challenges of
efficiently architecting and deploying applications on cloud
infrastructure in a holistic manner, dealing with the specific
challenges encountered in cloud infrastructures.

In this paper, we introduce MADCAT, a methodology en-
abling the structured creation of cloud applications, addressing
the complete application development lifecycle, from architec-
tural design to concrete deployment topologies executed on
cloud infrastructure, using iterative refinement and seamless
provenance documentation of decisions made by involved
stakeholders. We discuss the feasibility of our methodology
by applying it to a case study for a vehicle fleet management
application, illustrating its viability for large-scale distributed
applications.

The remainder of this paper is structured as follows.
Related research is discussed in Section II. Section III intro-
duces the MADCAT methodology and its basic properties. We
illustrate the use of our methodology in Section IV. Finally,
we conclude the work in Section V and provide an outlook
for ongoing and future work.

II. RELATED WORK

In this section, we discuss relevant prior research and
its relation to our proposed methodology. We show that
current approaches focus mostly on individual phases of the
architecture refinement process and do not provide suitable
support for all aspects of refining application architectures
and deploying them on cloud infrastructure. Contrary to these
traditional approaches, our methodology provides a holistic
view on the architecture refinement and supports the necessary
phases as well as various stakeholders to refine an application’s
architecture from the initial business requirements to the actual
deployment artifacts, as discussed in Section III. Since current
research in assisting the application creation processes does
not cover the complete application development lifecycle,
most approaches discussed in this section are compatible with
our methodology, in that they can supplement the according
lifecycle phase with the provided techniques. We structure the
discussion of related approaches based on their conceptual
focus, and discuss selected relevant work on cloud application
architecture with deployment support (Section II-A), system
design support (Section II-B), and architecture refinement
(Section II-C).

A. Cloud Application Architecture and Deployment Support

In [14], Liu et al present a reference architecture for
cloud infrastructures as a neutral, actor role-based conceptual
model. The reference architecture provides a solution based
on the neutrality principle with respect to cloud vendors and
technologies to prevent lock-ins. The objective of their research
was to develop the reference architecture that describes the
what of cloud computing instead of the how and avoids a
technical and solution based architectures. Hence, it provides
a starting point for a technical solution to build cloud-based
applications. Compared to our methodology, the level of detail
that they choose for their reference architecture is a suitable
starting point for our refinement process of architectural units
(AUs) and as such can be used in our methodology to
start the process of creating application-specific architectures.
Furthermore, the proposed reference architecture lacks any
type of refinement process to emerge with an architecture for
cloud-based applications and thus can benefit greatly from our
methodology.

Cloud Computing Open Architecture (CCOA) [15] pre-
sented by Zhang and Zhou is an approach in building a
cloud computing platform based on the concepts of service-
oriented architecture (SOA). The architecture is based on
seven architectural principles like virtualization of infrastruc-
ture, service-orientation for reusable services, and extensible
provisioning and subscription. The focus of their approach is
on developing a reusable and customizable architecture for
cloud platforms, which they demonstrate in a case study by
creating an architecture for an Infrastructure as a Service (IaaS)
cloud platform. Thus, their work has different focus from
our methodology that provides an approach for creating and
refining architecture for cloud-based applications rather than
whole cloud platform.

Kwon et al in [16] describe a technique to transition a
stand-alone desktop application into an application supported
by a cloud-based service named Cloud Refactorings. They

14

focus on extracting parts of the application that can execute on
a cloud infrastructure and rewiring the rest of the application to
use these remote services. The extraction process is supported
by the set of refactoring techniques used as an automated pro-
gram transformations to change stand-alone applications into
cloud-based applications. In particular, they provide refactor-
ings to extract cloud-based services, and retarget client-side ap-
plication to communicate with the remote services, and adapt
client-side applications to using functionality-wise equivalent
remote services that are incompatible with expected service
interface. The focus of our approach differs significantly from
the method proposed by Kwon et al. Cloud Refactorings focus
on rewriting existing, non-cloud applications into application
that are supported by the cloud infrastructure. Hence, they are
a valuable tool for developers to ease the migration process. On
the other hand, our methodology focuses on developing cloud-
based architecture for new applications and not on retrofitting
current non-cloud application. Nevertheless, the proposed so-
lution can be complementary tool to our methodology in which
non-cloud, legacy code can be reused and integrated into an
overall cloud-based architecture.

MODAClouds [17] approach proposed by Ardagna et al
provides a Model-driven solution to develop applications that
are agnostic with respect to cloud infrastructure and hence
mitigate possibility of vendor lock-ins. The solution targets
system developers and operators by giving them tools to
manage whole life-cycle phases of a cloud-based software
system. The solution provides a Decision Support System
that is used to determine which cloud system to adopt for
hosting the different components of the application, comparing
costs, risks, and analyzing non-functional characteristics for
each alternative provider. In it, a closed-loop between the run-
time and design-time environments triggers the dynamic re-
deployment of the final application or of its components. This
way, system developers and operators are able to adapt their
system to changing contexts and requirements both reacting
to long-term failures of the cloud providers and exploiting
Cloud additional services or improved performance. Hence,
MODAClouds focuses more on providing a cloud-agnostic
tool to design and implement the business-logic part of cloud-
based applications. Thus, it is more focused on internal design
and execution of a singular piece in a cloud-based applica-
tion rather than providing a solution for overall architecture
of a cloud-based application. More specifically, the solution
does not provide a method to identify, choose, integrate, and
deploy services that are provided by 3rd-party technologies
like storage or messaging. Furthermore, it does not integrate
different stakeholders into the decision process nor provide a
concrete method to integrate application-specific requirements
into the decision process.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is a recent effort aiming for portable
and standardized management of cloud services [18]. TOSCA
provides means for describing portable application deployment
topologies consisting of nodes (representing, for instance,
cloud services to be consumed or application deployment arti-
facts) and relationships (describing, for instance, containment
or dependency relations). Furthermore, TOSCA allows for the
specification of plans, represented using common workflow
languages such as the Business Process Model and Notation

(BPMN) or the Business Process Execution Language (BPEL),
which govern the possibly complex workflow of provisioning
and deploying an application on cloud infrastructure. Due to
TOSCA’s focus on deployment topologies of cloud applica-
tions, it is complementary to the methodology presented in this
paper, as it can be used to augment the transition from DUs
(see Section III-C) to artifacts deployed using the deployment
infrastructure repository.

B. System Design Support

A methodology for transforming requirements models
(structured specification of application requirements) to archi-
tectural design model (view) is examined in [19], [20] and
[21]. In [19] the authors introduce STREAM approach for a
step-wise model transformation. Initial requirements model is
expressed with concepts such as: actor, goal, dependency, task,
etc., which are refactored in the first phase of the refinement
process. Consequently, from this modularized requirements
model a set of design models is generated. These architectural
solutions are described via traditional ADL concepts, e.g.,
component, connector, port, etc., and they form a search space
for a concrete architectural solution (model). Concrete archi-
tecture is chosen based on the non-functional requirements
(NFR) and further refined by applying localized architec-
tural refinement patterns or by introducing variation/extension
points, as discussed in [20]. Further, the approach presented
in [21] is an extension to the aforementioned STREAM
approach. It adds the support to systematize the documentation
of architectural design decisions and the refinement process.
Our methodology does not impose any limitations on tech-
niques or tools to perform requirements engineering and anal-
ysis. Therefore, this approach can provide a structured, well-
documented transition from high-level business requirements
to the technology-independent AUs and seamlessly cooperated
with the other phases of our iterative architectural refinement
process.

Svahnberg et al in [22] propose a decision-support method
to aid in the understanding of different architecture can-
didates for a software system. The focus of the method
is on presenting key aspects for the understanding of the
candidates based on some specified quality attributes. Thus,
the method provides an important input for decision-makers
when designing a suitable system architecture. The method is
broken down into six steps: 1) identifying potential software
architecture candidates and key quality attributes, 2) creating
method framework, 3) prioritizing the quality attributes for the
software system to be developed, 4) identify which software
architecture candidate best fits the list of prioritized quality
attributes, 5) determining the uncertainty in the identification,
and 6) discussing the individual frameworks, the synthesis
of prioritized list of quality attributes and the recommended
software architecture candidate, to reach a consensus. Thus,
the method is supported by a notion of a framework that
allows comparison of different software architecture candidates
based on specific software quality attributes. Furthermore,
the support framework provides a mechanism that allows
decision-makers to reach a consensus on the benefits and
liabilities of the different software architecture candidates and
to increase the confidence in the resulting architecture decision.
Hence, the presented decision-support method can be used as

15

a complementary tool in our methodology. More specifically,
it can be used during the refinement process for DUs where
positive and negative quality attributes behind each technology,
including the deployment cost function, can allow for precise
analysis of different DUs and finding the best candidate under
specified quality attributes.

In [23] the authors focus on generating a component-level
Modal Transition System (MTS) from a system specification,
expressed with sequence diagrams. They transform provided
sequence diagrams into a set of states and transitions, which
either provide or forbid some behavior in the application
execution lifecycle. Among other things, they increase code
reuse at the component level by using the generated partial
behavioral models to perform component selection based on
the expected/provided behavior. Contrary to our methodology
they mostly focus on providing support for selecting suitable
components based on their behavior. Consequently, this ap-
proach could provide a useful extension to our methodology,
because it can assist the stakeholders with choosing suitable
computational units.

In [24] the authors deal with refining a software archi-
tecture for a specific, focused part of a global application
architecture. Their approach is based on the UML and recur-
sive refinement of UML use case diagrams to UML object
diagrams. To perform the refinement they introduce a tech-
nique, which consist of four distinct steps: object creation,
object elimination, object packaging and aggregation, and
object association. This approach is complementary to our
methodology, in the sense that our technical units (TUs) are
inherently implementation-independent and it can be used to
additionally support implementation of custom business logic
by deriving specific, code-level decisions for individual AUs
or TUs.

C. Architecture Refinement

Modeling and documenting of architecture design decisions
(ADD), as well as transforming them into design views (DV)
is addressed in [25], [26] and [27]. Both [25] and [26] deal
with modeling and documenting architectural design decisions
using architectural primitives. For example, in [25] the authors
propose a set of patterns (a pattern language), which can be
used to support service integration in process-oriented, SOA
based applications. To enable modeling of these patterns, the
authors define modeling elements called pattern primitives.
The pattern primitives provide a technology-neutral model-
ing approach for SOA-based applications and enable refining
the high-level architecture into low-level technical concepts,
such as individual service invocations. Further, in [27] the
authors focus on providing automated, model-based transla-
tion between pattern-based architectural design decisions and
design views (specifically component-and-connector model).
These approaches mostly focus on supporting the modeling
of applications behavior by utilizing software engineering
best practices. Our methodology provides means to determine
units, provisioned and deployed on different cloud topologies,
which can easily be communicated to a variety of stakehold-
ers. Our approach is technology independent and does not
make any assumptions regarding specific architectural views or
the realization of application business logic. Therefore, these

approaches can be seen as complementary, as they can be
incorporated in our methodology to provide additional support
to the stakeholders, e.g., with actual implementation realization
of the technical units (TUs).

A generative programming approach for software architec-
ture refinement is described in [28]. In this work, the authors
focus on designing a domain specific component framework
(DSCF) by capturing semantics of domain concepts in run-
time containers. They utilize generative programming to derive
component-based runtime containers, which provide domain
specific services. Our methodology can benefit from this ap-
proach on multiple levels. For example, it can be incorporated
in the first phase to help eliciting and manipulating domain
specific requirements, but also to refine the domain specific
computational units (special case of the AUs) and generate the
domain specific TUs for them. The TUs can then seamlessly
be integrated into the subsequent phases of our methodology.

In [29] the authors present an architecture description
language (ADL) supporting a step-by-step refinement of a
high-level architecture into concrete lower-level architecture
components, which implement the features and constraints
imposed at the abstract level. The main focus here is on
guaranteeing correctness of refinements, i.e., the mapping
between the abstract and the concrete architectures. To this
end, they utilize interpretation and style mapping, which are
used to prove the correctness of the refinement. The ADL
is compatible with our methodology and its applicability is
straightforward for the concepts which the language supports,
e.g., component, interface, connector, etc., as it can be used
out-of-the-box to refine and prove the correctness for these
units. Furthermore, our approach adds an additional step by
introducing deployment units (DUs) that enable deployment
of concrete TUs on top of the cloud infrastructures.

Approaches to the step-wise refinement of software archi-
tecture evolution are presented in [30] and [31]. They assume
refinements to be a set of changes that need to be made to
the representation of an application or a system after a new
feature is introduced or an (external) system is integrated. For
example, in [31] the authors describe Fire3, an architecture
design tool that supports integration of external applications or
systems. It starts form a coarse-grained integration architecture
and refines it into more detailed component architecture.
To this end, the authors introduce various concepts, such
as process, wrapper implementation components, middleware
support components, which support refining the high-level in-
tegration architecture into a more detailed technical component
architecture. The major difference to our approach is that
they assume the actual technologies (services, middleware or
systems) that need to be integrated are known in advance and
contrary to our methodology they focus neither on supporting
the technology decision process nor do they deal with the
actual deployment of these DUs when they have been inte-
grated into application architecture. However, this approach
can potentially supplement our methodology, as it can support
integrating concrete DUs by generating suitable wrappers of
proxy components.

16

Architectural Units decomposed into
Technical Units

Coarse-grained Architecture

refine

Architecture decomposed into
Architectural Units

transform using
technical unit

repository

Technical Unit
Repository

transform using
deployment unit

repository

Deployment Unit
Repository

Technical Units decomposed into
Deployment Units

Fig. 1: Overview of the MADCAT Approach

III. THE MADCAT METHODOLOGY

In this section, we introduce MADCAT— a Methodology for
Architecture and Deployment of Cloud Application Topologies
based on iterative refinement. Our methodology is designed to
tackle practical challenges encountered in realizing large soft-
ware projects, such as the multitude of involved stakeholders
with different levels of business and technical expertise, and
the arising requirement for communication and reporting on
different levels of abstraction. Moreover, complete informa-
tion about business and technical requirements is usually not
readily available in early stages of a project but emerge and
evolve over time as the project progresses. We furthermore
posit that decisions within a project should be made as late as
possible and as early as necessary to minimize risks such as
over-engineering, requirements creep [11], feature creep [12],
premature optimization [13], and vendor lock-in.

We tackle these problems by introducing a methodology
to iteratively refine an application architecture based on stake-
holders’ requirements, from a coarse-grained abstract repre-
sentation of the target application capturing general business
requirements to a concrete model of application components to
be deployed on cloud infrastructure, as shown in Figure 1. To
achieve this transition, we introduce the concepts of architec-
tural units, technical units, and deployment units. Architectural
units represent functional concerns in an application structure,
such as storage or computation. These functional concerns are
mapped to technical units according to functional requirements
using a decision tree structure allowing proper assessment
of possible technology decisions based on their merits for
the application under development. The modeled technical
units are subsequently refined to deployment units guided
by customer requirements, using a repository of available
deployment units that are suitable to realize modeled technical
units. The resulting application’s deployment topology is pro-
visioned and deployed on cloud infrastructure with the help
of our deployment infrastructure repository that orchestrates
deployment of concrete artifacts on cloud infrastructure using
offerings most suitable to fulfilling customer requirements.

In the following, we discuss the introduced concepts of
architectural, technical, and deployment units in greater detail.

A. Architectural Units

One of the guiding principles of the proposed approach is
to take decisions as late as possible and as early as necessary.

Because, when starting to design an application with the
customer little is known about it, and only a general idea of
the desired outcome exists.

Application architects create an initial, abstract view of
the application in cooperation with the customer’s executive
stakeholders. This abstract view is subsequently refined into
a coarse-grained application architecture, as more information
is gathered through requirements elicitation and requirements
engineering processes. Several state of the art approaches
are suitable for this task, such as goal-based approaches like
KAOS [32], and priority analysis methods [33]. Iteratively,
functional specifications are created that represent the stake-
holders’ requirements and expectations towards the application
to be. Our method is designed to support this incremental
process by iteratively refining the abstract view of the applica-
tion, annotated with business requirements, into more detailed
representations of the application architecture. Application
architects closely work with customer stakeholders formulating
their requirements to refine the application architecture until it
is composed solely of architectural units.

Architectural units (AU) represent technology-independent
functional concerns, such as storage or computation, and serve
as reusable fragments, or building blocks, for application
composition. To aid software architects in their task, our
methodology incorporates a repository of AUs, allowing for
reuse of gathered knowledge across teams, departments, and
even companies. The AU repository furthermore simplifies and
encourages the adoption and maintenance of architectural best
practices by documenting and capturing stakeholder expertise.
If necessary, application architects will create additional AUs
to realize customer requirements and add them to the AU
repository.

An application architecture composed of AUs still provides
an abstract view on the application to be and is suitable for
further collaboration on application’s design with customer’s
executive stakeholders.

B. Technical Units

After decomposing the application architecture into AUs,
application architects, engineers, and customer’s technical staff
transform AUs into technical units (TUs), using TU deci-
sion trees and questionnaires. A TU represents a technique
or pattern that can be used to realize an AU. TUs serve
as mediation layer between abstract architectural concerns

17

and concrete deployment artifacts, capturing implementation-
independent technology decisions. Usually, multiple possible
TUs are available for realizing an AU, calling for a structured
way of mapping AUs to TUs and documenting the decision
process. To facilitate this structured approach, MADCAT em-
ploys decision trees to support stakeholders in realizing the
mapping between high-level architectural concerns and TUs.

Decision trees provide detailed guidelines on how to trans-
late an AU to a set of TUs that represent possible technical
realizations of the AU. A decision tree contains three types
of nodes: 1) a root node that represents an AU, 2) a set
of leaf nodes that represent the TUs, and 3) decision nodes
used to connect the root node with leaf nodes. Decision nodes
represent evaluation criteria and are used to navigate from the
AU (the root node) to a particular TU (a leaf node), depending
on the application requirements and other design decisions or
constraints.

Evaluation criteria represent a set of conditions, which
a stakeholder, e.g, a solution architect, might require from
an application, executed on a cloud platform, to be fulfilled.
Further, it can be used to describe some of the features of
an application. For example, if it needs to store non-relational
real-time or more traditional relational data. Therefore, evalu-
ation criteria provide information used to reduce the technical
units search space, thus, supporting the stakeholder to design
cloud-based applications and provision the required resources.
However, applicability of the criteria depends on a concrete
problem and type of the AU, but also different stakeholders
will have different understanding and requirements regarding
it.

The resulting application architecture composed of TUs
serves as documentation of design decisions taken and can
be used to communicate and coordinate these decisions with
customer’s technical staff.

C. Deployment Units

Following the decomposition of the application architecture
into TUs, application architects work with engineers and opera-
tions experts to identify concrete components – or deployment
units (DU) – to be used in the implemented application. A
DU is a part of the application’s deployment topology for
realizing a specific TU. For each TU we create one or more
DUs that describe how the TU can be deployed in a cloud
environment. DUs metadata consists of a utility function to
allow stakeholders to properly assess elasticity dimensions
and other non-functional properties affected by the DU. This
process is aided by the use of the DU repository, providing
management and query facilities to efficiently perform the
mapping between a TU and DUs. As with earlier phases,
DUs are created and added to the repository as necessary to
capture gathered knowledge for later reuse. The resulting ar-
chitecture composed of DUs is suitable for communication and
coordination with the customer’s system operators to align the
application structure with possible infrastructure requirements
and constraints.

The application architecture composed solely of DUs is
used to identify a) business logic components that need to be
implemented specifically for the application to be, along with

b) reusable stock components that only need to be configured
for integration with the application, (e.g., a database server).
In MADCAT, custom business logic components and stock
component are treated largely in the same way. While the
implementation of business logic components will certainly
call for larger efforts, the resulting artifacts are packaged
and deployed with configuration directives, just as any other
component. Configuration directives are contained in the de-
ployment infrastructure repository (DIR). The DIR provides
a catalog of concrete deployment artifacts to provision DUs
on cloud instances, and serves as an abstraction layer between
DUs and different provisioning technologies. The DIR contains
multiple infrastructure mappings for specific DUs, allowing
flexible provisioning using different configuration management
solutions, such as Chef recipes for use with OpsCode Chef5 or
Amazon OpsWorks6, or Puppet manifests for use with Puppet7.
Additionally, the DIR manages application deployment orches-
tration using provider-independent communication facilities,
such as [34], [35], Apache jClouds8, or fog9 to minimize the
risks of vendor lock-in.

By treating business logic artifacts similar to component
configuration artifacts, we allow for the generalization of
created business logic components into DUs, making them
proper first-class citizens in our methodology.

The resulting application’s deployment topology along with
according configuration directives can be directly applied on
cloud infrastructure to provision necessary resources on de-
mand, install relevant software packages, perform necessary
configuration to establish connections between application
components, and execute the application.

IV. CASE STUDY

In this section, we demonstrate the feasibility of the
MADCAT methodology using a fleet management (FM) sce-
nario application for small-wheel, zero-emissions electric ve-
hicles deployed on golf courses10.

Electric vehicle information systems consist of onboard
hardware and software platforms that are tightly coupled with
the vehicles and their usage scenario – mainly as golf cars.
The main features provided by the onboard system include
1) vehicle maintenance (odometer monitoring, maintenance
schedule, fault history, battery health, crash history, and engine
diagnostics), 2) vehicle tracking (position, driving history, find
car, pace of play, and geo-fencing), 3) vehicle info (charg-
ing status, odometer, serial number, and service notification),
4) set-up (club-specific information, maps, and fleet informa-
tion), as well as additional market apps for golfers, such as
food & beverages apps, etc.

Additionally, the FM solution needs to accommodate for
various business requirements. New cars are leased to golf
courses for a certain period of time. At the end of each

5http://opscode.com/chef
6http://aws.amazon.com/opsworks/
7http://puppetlabs.org
8http://jclouds.org
9http://fog.io
10The use case is extracted from our ongoing collaboration with industrial

partners but the company name is omitted to protect business information.

18

lease, the cars are reclaimed, refurbished, and resold to second
markets such as supermarkets and recreational parks. The cars
in lease are geographically distributed in many golf courses,
and the number of cars is expected to have exponential growth
in the next years. Due to the fact that a considerable number of
cars can be lost or damaged during the initial leasing period,
the FM platform is aimed at collecting and managing relevant
information about the status of all deployed cars to a cloud
application to improve the company’s operational efficiency
and relationship with the customers.

Vehicles communicate with the platform via 3G or GPRS
to exchange telematic and diagnostic data. The application
manages this data and provides a set of core services:

1) Realtime vehicle status: location, driving direction, speed,
driver operations, vehicle faults;

2) Remote diagnostics: diagnostics of equipment status, bat-
tery health, etc. and sending timely maintenance re-
minders and instructions;

3) Remote control: overriding onboard vehicle control sys-
tem in case of emergency, e.g. to restrict the motion of
vehicle when it’s driving out of course;

4) Batch configuration and software updates: remotely con-
figure course maps, course information and software
feature set for a fleet, applying software updates, and
installing new value-added services to a large number of
cars;

5) Fleet management: managing customers’ fleets, service
history, fleet usage patterns.

Obviously, these core services need to be provided by a
reliable and responsive platform so that they can improve user
experiences on top of the existing onboard system. Therefore,
the service platform needs to accommodate the scale of the
current FM offering as well as support projected growth in
the future. In the following, we demonstrate how the MADCAT

methodology is applied in the design of the FM application.

A. From Requirements to Architectural Units

In this section, we elaborate how to use MADCAT to
iteratively design, provision, and deploy the aforementioned
FM application.

As mentioned in Section III, MADCAT allows stakeholders
to take decisions as late as possible and as early as necessary.
As illustrated in Figure 2, our approach embraces this notion of
uncertainty and allows stakeholders to represent the application
as an abstract artifact, annotated with the business requirements
gathered so far.

Fleet Management
Availability ≧ .9995
ISO 9001 compliance
...

Customer
Car/Sensors

Gateway

Car/Sensors

Fig. 2: Abstract View of Application with Business Requirements

In the FM scenario, we start the refinement process by
first analyzing how the external clients, namely customers
and vehicles, that interact with the application. With respect
to the customers, the responsibility of the application is to
provide Web UI that can be used by customers directly and
an external API (e.g. REST) that can be used third-party
applications (e.g., food & beverages app). On the other hand,
the responsibility of the application towards vehicles is to
provide an IoT interface to receive information about their
current state. Due to the fundamentally different ways these
two external clients communicate with the application, we can
immediately distinguish that the application will require two
frontend AUs: Web interface and IoT connector (see Figure 3).
The next step in the refinement process is to introduce an AU
that will be responsible for persisting the application’s data,
such as sensory information received from vehicles. Hence,
as shown in Figure 3, we introduce the Storage AU that
will fulfill this requirement. Further refinement steps introduce
the Monitoring AU to deal with the online monitoring of
information received from vehicles and reacting/processing
this information based on some business rules, the Autho-
rization AU to deal with the single sign-on requirement that
was requested by the customers, and App Server to deal with
execution and coordination of long running business processes.

Figure 3 shows the finalized architecture diagram for
the vehicle fleet management scenario application, refined to
contain only AUs, their communication partners (signified by
connections between units), as well as requirements applicable
to them.

Fleet Management

Location = Dubai
elastic

Customer
Car/Sensors

data-intensive

elastic

elastic

Authorization

«Frontend»
Web Interface

Gateway

Storage
«Computation»
App Server

«Computation»
Monitoring

Car/Sensors

«Frontend»
IoT Connector

elastic

elastic elastic

Fig. 3: Application Architecture using Architectural Units

At this stage, the requirements call for these functional
concerns to be met in the resulting application, but no decision
on technical realization needs to be taken yet, deferring the
technical decisions as much as possible, so they can be taken
with the sufficient knowledge about the application.

B. From Architectural Units to Technical Units

In this section we describe the second step of the iterative
architectural refinement process. The input to this step is the
end-result of the previous phase (see Section IV-A). Therefore,
in this phase a stakeholder, e.g., a solution architect takes the
proposed FM application template, containing the necessary

19

Storage

Real-Time
Data Big DataSmall Data

HistoryCurrent
State

Non
PersistentPersistent

Memory Image

SimpleComplex

Column Family Key/Value

Eventual
Consistency

Immediate
Consistency

Complex Simple Relational

Document
Based

Key/Value Graph Based

Read
Intensive

Write
Intensive

Fault
Tolerant

Master/Slave
RDBMS

Monolithic
RDBMS

Fig. 4: Example of a Decision Tree for the Architectural Unit storage.

AUs and further refines it into the technical architecture of the
FM cloud application.

Figure 4 illustrates a decision tree (as described in Sec-
tion III-B), which maps the AU storage to a set of TUs,
which represent possible technical realization of storage for
the FM application. As we have seen in Section IV-A, storage
is one of the crucial AUs utilized by the FM application.
Therefore, a solution architect will need to choose among the
multiple possibilities to store data in the data center. The first
criteria in the decision tree is the type of data, which will
be stored. In this case we know there will be a high volume
of real-time sensory data generated by the vehicles. Further,
due to stakeholder’s business requirements, the history of the
vehicle performance, is very important. Therefore, we need to
support different (possibly off-line) analytics about vehicle’s
status like maintenance history, battery condition and warranty,
motor status, location, tire pressure and so forth. Based on the
decision tree (see Figure 4), we notice that these requirements
match the big data decision node. In our case, we have two
options how to store big data, depending on its complexity.
Finally, a solution architect can choose the key-value TU,
because the data model will be naturally centered on a vehicle
entity. The resulting, complete technical architecture for the
FM application is shown in Figure 5.

We notice that this process offers different advantages
to the stakeholders involved into designing, developing and
provisioning of applications executing in cloud platforms.
For example, separation of concerns and different logical
views on the design and development process, which enable
different stakeholders to articulate their goals and constraints
on cloud applications. Additionally, by carefully choosing the
granularity of the resources and TUs and providing suitable
evaluation criteria we can (at-least partially) automate the
decision process and in some cases even defer decisions to
the runtime.

C. From Technical Units to Deployment Units

In this section, we present the third step of the iterative
architectural refinement process. The input of this step is the
end result of the previous section (see Section IV-B). In this
phase, stakeholders, e.g., system operators take the proposed

Fleet Management

data-intensive

Location = Dubai
elastic

data-intensive

elastic

elastic

elastic
elastic

elastic

Governance

Enterprise Service Bus

NoSQL
Key/Value

App Server

Business
Activity Monitor

Location = Dubai
elastic

Identity

elastic
RDBMS

Master/Slave

Data Server

Customer
Car/Sensors

elastic
Web Interface

Gateway

Car/Sensors

IoT Connector
elastic

Fig. 5: Application Architecture refined with Technical Units

TUs and decide on how they are concretely realized using spe-
cific technologies and will be deployed in a cloud environment.
The output of this step is the deployment topology of the FM
cloud application.

«cluster»

«instance»
Cassandra

«instance»
Cassandra

«instance»
Cassandra

«instance»
Cassandra

 ...

 ...

 ..
.

 ..
. ...

costDU(n, t) = n × costI(t)

n – number of instances
t – type of virtual machine

- Slow scaling down

+ Masterless clustering
+ Linear scalability
+ No single point of failure
+ Suitable for BigData
+ MapReduce with Hadoop

Fig. 6: Apache Cassandra Deployment Unit

In the previous section, we concluded that FM application
requires the key-value TU for storage of the sensory data
generated by deployed vehicles. Taking this as input, we can
generate DUs for multiple key-value databases like Apache

20

Cassandra11, Riak12, Voldemort13 and so forth. As an example,
Figure 6 shows the DU for the Apache Cassandra key-value
database. Each Apache Cassandra instance is represented as
a concrete node and tagged with the «instance» class.
Furthermore, all Apache Cassandra instances are composed in
a cluster and hence represented as a logical node that is tagged
with the «cluster» class. Because a cluster can consist of
any number of Apache Cassandra instances, we represent this
with the ellipsis sign between them. To calculate the utility of
this DU (see Section III-C), we provide a cost function and a
table of benefits. The cost function for an Apache Cassandra
DU, costDU (n, t) = n × costI(t), depends on the number
of instances n and costI , the cost of deploying it on the
underlying infrastructure, e.g., virtual machine type t. Finally,
Figure 6 shows the table of benefits and drawbacks for using
Cassandra DU.

«cluster»

«master»
Postgres

«slave»
Postgres

«slave»
Postgres

 ...

costDU(n, t) = cost(master) + n × costI(slave)

n – number of slave instances
master – type of the master virtual machine
slave – type of the slave virtual machines

- Single point of failure with master
- Slow scaling

+ (Partial) replication of data
+ Good for read intensive data
+ Fault tolerant w.r.t. read

Slony

Slony

Slony

«write» «read»

Fig. 7: Postgres Deployment Unit

In this example we only used two types of classes, namely
instance and cluster, but other DUs can use other classes like
web server, load-balancer, storage, master, slave, application
server, and so forth. An additional example for a Master-Slave
Postgres14 with Slony15 DU is presented in Figure 7. This DU
can be used for the Master/Slave Storage TU in the decision
tree from Figure 4.

A complete deployment topology of the FM application is
shown in Figure 8. We can notice that the decisions that lead
from requirements to AUs, then from AUs to TUs, and finally
from TUs to DUs will be preserved and can easily be conveyed
to different stakeholders.

The final step in the scenario is to use the derived DUs, i.e.,
FM deployment topology and select appropriate configuration
directives that are suitable for automatically deploying the
application on cloud infrastructure. For example, the following
Chef recipe is queried from the DIR and used to instantiate
the Cassandra DU in the cloud environment:

template "#{node[:cassandra][:conf_dir]}/cassandra.yaml" do
source "cassandra.yaml.erb"
owner "root"
group "root"
mode "0644"
variables({

:cassandra => node[:cassandra],
:seeds => seed_ips

})
notifies :restart, "service[cassandra]",

:delayed if startable?(node[:cassandra])
end

11http://cassandra.apache.org
12http://basho.com/riak/
13http://www.project-voldemort.com/voldemort/
14http://www.postgresql.org
15http://www.slony.info

Fleet Management

Location = Dubai

Customer
Car/Sensors

Gateway

Car/Sensors

Governance

Service Registry
Service Repository

Load Balancer

Identity

User Mgmt
Single Sign On

Load Balancer

Bus. Act. Mon.

Monitoring
Reporting

Billing

Load Balancer

Application Server

Service Registry
Service Repository

ServServiceice RegiRegistrystry
Service Repository

Vehicle Tracking
Live Tracking

Vehicle Monitoring
Vehicle Management

Load Balancer

NoSQL Key/Value

Cassandra
Node

Load Balancer

Ent. Service Bus

Service Registry
Service Repository

ServServiceice RegiRegig strystryy
Service Repository

Message Mediation
Proxy Services

APIs

Load Balancer
RDBMS Master/Slave

PostgreSQL
Master

PostgreSQL Hot
Standby Slave

read

Data Server

NoSQL Data Facade
Relational Data Facade

Load Balancer

read/
write

Location = Dubai

Fig. 8: Fleet Management Application Deployment Topology

This recipe together with other configuration directives for
the rest of the DUs, allows provisioning of necessary resources
in the cloud environment and hence ensures correct execution
of our FM application.

V. CONCLUSION

The cloud computing paradigm introduces new possibil-
ities and challenges to be considered in application design
and deployment. On-demand resource provisioning, as well
as resource and cost elasticity, need to be considered when
realizing large-scale distributed cloud applications. In this
paper we presented MADCAT, a methodology tackling the
practical problems faced when designing and deploying cloud
applications. Current approaches do not sufficiently address
the specific challenges encountered when architecting and
deploying applications on cloud infrastructure in a holistic
manner. MADCAT enables the structured creation of cloud-
native applications, covering the complete application de-
velopment lifecycle, from architectural design to concrete
deployment topologies provisioned and executed on cloud
infrastructure. We introduced the concepts of architectural
units to encapsulate functional concerns, technical units to
encapsulate technical design decisions, as well as deployment
units to map from technical concerns to deployable artifacts
on cloud infrastructure. By using iterative refinement and
seamless provenance documentation of decisions made in
the process, MADCAT simplifies communication with relevant
stakeholders and enables efficient design and deployment of
distributed cloud applications. We discussed the feasibility of
the introduced method using a case study from the vehicle fleet
management domain and illustrated the practical advantages of
the introduced concepts and documentation artifacts.

As part of our future work, we will implement compre-
hensive tool support to assist and simplify the adoption of the
MADCAT methodology for creating cloud-native applications,
and will integrate our work on creating cloud-based IoT ap-
plications [36]. We further plan to extend the presented notion
of technical unit to incorporate social compute units [37] to
allow for effective modeling of mixed systems.

21

ACKNOWLEDGMENT

The research leading to these results was supported by the
Pacific Controls Cloud Computing Lab16 (PC3L), as well as
the Austrian Science Fund (FWF) under grant P23313-N23
(Audit 4 SOAs).

REFERENCES

[1] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, Apr. 2010.

[2] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic
processes,” Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[3] G. Copil, D. Moldovan, H.-L. truong, and S. Dustdar, “SYBL: An
extensible language for controlling elasticity in cloud applications,”
International Symposium on Cluster, Cloud and Grid Computing, pp.
112–119, 2013.

[4] D. Moldovan, G. Copil, H.-L. truong, and S. Dustdar, “MELA: Mon-
itoring and analyzing elasticity of cloud services,” in International
Conference on Cloud Computing Technology and Services. IEEE,
2013, pp. 80–87.

[5] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing: Concepts,
Technology & Architecture. Prentice Hall, 2013.

[6] P. Kruchten, R. Capilla, and J. C. Dueas, “The decision view’s role
in software architecture practice,” Software, IEEE, vol. 26, no. 2, pp.
36–42, 2009.

[7] C. Inzinger, W. Hummer, I. Lytra, P. Leitner, H. Tran, U. Zdun,
and S. Dustdar, “Decisions, models, and monitoring – A lifecycle
model for the evolution of service-based systems,” in Proceedings of
the International Enterprise Distributed Object Computing Conference.
IEEE, 2013, pp. 185–194.

[8] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison-Wesley Professional, 2004.

[9] H. Takeuchi and I. Nonaka, “The new new product development game,”
Harvard Business Review, vol. 64, no. 1, pp. 137–146, 1986.

[10] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit, ser. The Agile software development series. Addison-
Wesley Professional, 2003.

[11] C. Jones, “Strategies for managing requirements creep,” Computer,
vol. 29, no. 6, pp. 92–94, 1996.

[12] B. Elliott, “Anything is possible: Managing feature creep in an innova-
tion rich environment,” in Proceedings of the International Engineering
Management Conference. IEEE, 2007, pp. 304–307.

[13] D. E. Knuth, “Structured Programming with go to Statements,” ACM
Computing Surveys, vol. 6, no. 4, Dec. 1974.

[14] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and
D. Leaf, “NIST cloud computing reference architecture,” NIST
Special Publication – 500-292, Sep. 2011. [Online]. Available: http:
//www.nist.gov/manuscript-publication-search.cfm?pub_id=909505

[15] L.-J. Zhang and Q. Zhou, “CCOA: Cloud computing open architecture,”
in Proceedings of the International Conference on Web Services. IEEE,
2009, pp. 607–616.

[16] Y.-W. Kwon and E. Tilevich, “Cloud refactoring: automated
transitioning to cloud-based services,” Automated Software
Engineering, Oct. 2013. [Online]. Available: http://dx.doi.org/10.
1007/s10515-013-0136-9

[17] D. Ardagna, E. di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C. S. Nechifor, D. Petcu, A. Ger-
icke, and C. Sheridan, “MODAClouds: A model-driven approach for the
design and execution of applications on multiple clouds,” in Proceedings
of the Workshop on Modeling in Software Engineering. IEEE, 2012,
pp. 50–56.

[18] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services
using TOSCA,” Internet Computing, IEEE, vol. 16, no. 3, pp. 80–85,
Mar. 2012.

16http://pc3l.infosys.tuwien.ac.at/

[19] M. Lucena, J. Castro, C. Silva, F. Alencar, and E. Santos, “Stream: a
strategy for transition between requirements models and architectural
models,” in Proceedings of the Symposium on Applied Computing.
ACM, 2011, pp. 699–704.

[20] J. Castro, J. Pimentel, M. Lucena, E. Santos, and D. Dermeval, “F-
STREAM: A flexible process for deriving architectures from require-
ments models,” in Advanced Information Systems Engineering Work-
shops, ser. LNBIP. Springer Berlin Heidelberg, 2011, vol. 83, pp.
342–353.

[21] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes,
M. Lucena, and A. Finkelstein, “STREAM-ADD - Supporting the docu-
mentation of architectural design decisions in an architecture derivation
process,” in Proceedings of the Computer Software and Applications
Conference. IEEE, 2012, pp. 602–611.

[22] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A quality-
driven decision-support method for identifying software architecture
candidates,” International Journal of Software Engineering and Knowl-
edge Engineering, vol. 13, no. 05, pp. 547–573, 2003.

[23] I. Krka, G. Edwards, Y. Brun, and N. Medvidovic, “From system
specifications to component behavioral models,” in Proceedings of the
International Conference on Software Engineering. IEEE, 2009, pp.
315–318.

[24] R. J. Machado, J. M. Fernandes, P. Monteiro, and H. Rodrigues,
“Refinement of software architectures by recursive model transforma-
tions,” in Product-Focused Software Process Improvement, ser. LNCS.
Springer Berlin Heidelberg, 2006, vol. 4034, pp. 422–428.

[25] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling process-driven and
service-oriented architectures using patterns and pattern primitives,”
ACM Transactions on the Web, vol. 1, no. 3, pp. 14:1–14:44, Sep. 2007.

[26] U. Zdun and P. Avgeriou, “Modeling architectural patterns using
architectural primitives,” in Proceedings of the Conference on Object-
oriented Programming, Systems, Languages, and Applications. ACM,
2005, pp. 133–146.

[27] I. Lytra, H. Tran, and U. Zdun, “Supporting consistency between
architectural design decisions and component models through reusable
architectural knowledge transformations,” in Software Architecture, ser.
LNCS. Springer Berlin Heidelberg, 2013, vol. 7957, pp. 224–239.

[28] F. Loiret, A. Plsek, P. Merle, L. Seinturier, and M. Malohlava, “Con-
structing domain-specific component frameworks through architecture
refinement,” in Proceedings of the Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2009, pp. 375–382.

[29] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct architec-
ture refinement,” Transactions on Software Engineering, IEEE, vol. 21,
no. 4, pp. 356–372, Apr. 1995.

[30] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” in Proceedings of the International Conference on Software
Engineering. IEEE, May 2003.

[31] T. Haase, O. Meyer, B. Böhlen, and F. Gatzemeier, “Fire3: Architec-
ture refinement for a-posteriori integration,” in Applications of Graph
Transformations with Industrial Relevance, ser. LNCS. Springer Berlin
Heidelberg, 2004, vol. 3062, pp. 461–467.

[32] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Science of Computer Programming, vol. 20,
no. 1, pp. 3–50, 1993.

[33] K. E. Wiegers, Software Requirements, 2nd ed. Microsoft Press, 2009.

[34] B. Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and M. Loichate,
“Building a mosaic of clouds,” in Euro-Par 2010 Parallel Processing
Workshops, ser. LNCS. Springer Berlin Heidelberg, 2011, vol. 6586,
pp. 571–578.

[35] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar, “Winds
of change: From vendor lock-in to the meta cloud,” Internet Computing,
IEEE, vol. 17, no. 1, pp. 69–73, 2013.

[36] S. Nastic, S. Sehic, M. Vögler, H.-L. Truong, and S. Dustdar, “PatRICIA
– a novel programming model for iot applications on cloud platforms,”
in International Conference on Service Oriented Computing and Appli-
cations. IEEE, 2013, pp. 53–60.

[37] S. Dustdar and K. Bhattacharya, “The social compute unit,” Internet
Computing, IEEE, vol. 15, no. 3, pp. 64–69, 2011.

22

