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Abstract—Scheduling workloads on large-scale infrastructures,
such as in the Edge-Cloud continuum is a challenging task.
Usually, the scheduling algorithm considers only a limited sample
of the infrastructure nodes, typically obtained through random
sampling. The sampling reduces the number of nodes, which
need to be evaluated in the scheduling pipeline, making the
scheduling process more saleable. Unfortunately, current sam-
pling approaches become largely inefficient when the infrastruc-
ture is heterogeneous and specific, scarce node characteristics
are required to successfully execute a workload. Computing
continuum infrastructures are heterogeneous, hence, we need to
re-think the sampling process to keep it viable at scale while
also being able to identify and leverage the heterogeneity of
the Edge-Cloud continuum resources. In this article, we present
Intelligent Sampling – a novel technique for improving sampling
in large-scale and heterogeneous infrastructures. We develop a
model for any heterogeneous infrastructure. Based on this model,
we provide a method to sample the infrastructure nodes more
accurately, considering the specific task at hand. Finally, we
leverage the Alibaba PAI dataset to show that our approach
is 2.5x times more accurate compared with other state-of-the-art
sampling mechanisms while retaining comparable performance
and scalability.

Index Terms—Computing continuum, Intelligent sampling,
Workloads scheduling, Heterogeneous infrastructure model

I. INTRODUCTION

The emerging computing paradigm, the computing contin-
uum [1], [2], merges all computing tiers, from the IoT or
Edge computing to Cloud computing or High-Performance
Computing (HPC). This will allow future applications to selec-
tively configure their underlying infrastructure to provide the
best services to their users. Nevertheless, reaching this novel
paradigm is full of challenges [3], which are accentuated if the
computing continuum paradigm also embraces the Serverless
capabilities [4], [5]. It requires managing applications’ needs
autonomously, calling for a set of methods and techniques that
reduce the management burden while being fast and effective.

Scheduling has been under research for many years now. It
is an NP-hard problem [6], hence optimal solutions can be un-
practical in large-scale scenarios, and developing heuristics [7]
or meta-heuristics [8] to solve the problem is a common
approach.
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Fig. 1: Infrastructure virtual adaptation. The left schema shows
the infrastructure nodes distribution with respect to the types
of GPUs. The right represents the same infrastructure virtually
adapted to workload requirements.

Computing Continuum systems, such as Edge-Cloud con-
tinuum, are distributed and large-scale. These characteristics
preclude fully centralized scheduling architectures [9]. For ex-
ample, the Edge’s capacity to lower the latency of applications,
given its proximity to the data generation is undermined if the
provision of the infrastructure resources is centralized in the
Cloud and requires long-range connections.

Scheduling on large-scale and distributed computing in-
frastructures is typically a 2-step process that deals with the
infrastructure scale and relieves the scheduler from having
to score all the nodes. The first step can be performed
through sampling [10] or auctioning [11]. The first method
returns a sampled set of nodes from the infrastructure to
the scheduler. The second changes the angle by transforming
the nodes into agents able to bid/steal workloads, making
them responsible for the scheduling process. Random sampling
produces excellent results when the infrastructure is assumed
to be homogeneous [10], given that the probability of obtaining
a node with the expected characteristics is 1. However, when
the infrastructure is heterogeneous, its efficiency deteriorates
proportionally to the heterogeneity of the cluster. Observing
Figure 1, if the workload to schedule can only support having
GPUs of type A and C, then the probability of finding any



of these nodes from a random sampler is below 0.5. Bidding
on workloads have also shown promising results but it cannot
guarantee a specific placement for workloads [12].

The main contribution of this article is two-fold. On the
one side, we propose an Intelligent Sampling mechanism
to improve the node sampling process for large-scale and
heterogeneous computing infrastructures. Intelligent Sampling
is able to provide a sample of the most convenient nodes for
the incoming workload based on the historical usage of the in-
frastructure. On the other side, we develop a model for hetero-
geneous infrastructures, which is leveraged by the Intelligent
Sampling mechanism. The model can abstract infrastructure
complexities to the scheduler while providing infrastructure-
wise enhancement capabilities due to its awareness of the
heterogeneity characteristics. The developed model is applied
to the Alibaba PAI dataset [13], and the Intelligent Sampling
mechanism is evaluated and compared with other state-of-the-
art sampling approaches obtaining almost 2.5X more accu-
rate samples while retaining a comparable performance and
scalability. The code and results can be found in our GitHub
repository1.

This work is conducted within the Polaris project [14]–[16].
Polaris and all its frameworks and tools a fully open-sourced
and publicly available in GitHub2. The Polaris project is part
of the Centaurus Infrastructure initiative34, which is hosted by
the Linux Foundation5

This article is organized as follows. Section II provides
an overview of the Intelligent Sampling mechanism and the
required background for our work. Then, Section III presents
the developed infrastructure model, and Section IV formally
describes the Intelligent Sampling mechanism. Section V
presents a model use case by implementing it in a real dataset
and evaluates the performance of Intelligent Sampling. Next,
the related work is presented in Section VI, and finally,
Section VII presents the future work and the conclusions for
this article.

II. APPROACH OVERVIEW & BACKGROUND

A. Overview of Intelligent Sampling

Intelligent Sampling aims to enable workloads’ scheduling
process on large-scale, distributed, and heterogeneous com-
puting infrastructures by providing the scheduler with a set
of conveniently selected nodes. Further, Intelligent Sampling
brings the possibility of leveraging the proposed infrastructure
model, which exposes to the sampling mechanism the charac-
teristics of the heterogeneity types.

Following Figure 2, we see that matching the infrastruc-
ture’s characteristics with the workload’s requirements is an
NP-Hard problem. Our approach abstracts both the infras-
tructure characteristics and the workload requirement to find
confluent factors. We obtain the abstraction of the workloads

1https://github.com/polaris-slo-cloud/intelligent-sampling
2https://github.com/polaris-slo-cloud
3https://www.centaurusinfra.io/
4https://github.com/CentaurusInfra/polaris
5https://www.linuxfoundation.org/

by leveraging an apriori profiling methodology for workloads,
see next subsection II-B, which drastically reduces their dif-
ferences by grouping them into profiles that exhibit similar
behaviors. Similarly, we present in this article a model for
the infrastructure, see subsection III-B, that characterizes and
classifies heterogeneous computing resources. Only through
modeling the infrastructure and profiling the workloads, we
can tackle large-scale, heterogeneous, and distributed comput-
ing infrastructures.
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Fig. 2: Overview of the process required to develop Intelligent
Sampling.

As shown in Figure 2, by leveraging the infrastructure model
and the workload profile, we can develop the Intelligent Sam-
pling mechanism for large-scale, geographically distributed,
and heterogeneous computing infrastructure. Intelligent Sam-
pling consists of providing a sample of adequate infrastructure
nodes for the incoming workload. This is done by virtually
reconfiguring the infrastructure nodes distribution. Hence for
the sampler, the available nodes to select fulfill the require-
ments of the incoming workload. Figure 1 shows the actual
heterogeneity distribution of the computing infrastructure, and
how the sampler sees it, Figure 1 right side.

As an example, imagine a computing infrastructure with
computing nodes containing GPUs. Each node has a type of
GPU and there are 3 types of GPUs. Then, from the history
of executions, we know that the workload’s profile works
well with only 2 out of the three available GPUs. Hence,
the Intelligent Sampling method will only sample nodes from
those containing adequate GPUs.

B. Background information on profiling

Intelligent Sampling leverages the PolarisProfiler to abstract
within profiles the incoming workloads to schedule, the work
is published in this same proceedings [17]. This is a profiling
methodology for workloads based on static, apriori metadata.
The aim is to generate profiles that include homogeneous
workload traces from the perspective of infrastructure usage
and seamlessly map new workloads to them. Figure 3 provides
a high-level representation of the PolarisProfiler concept. It
shows the mapping of apriori metadata features from new
workloads to existing workload profiles. The Profile classifier
module performs the mapping, while the Profile generator



derives workload patterns from infrastructure usage. It also
shows how to trace metadata back to workload pattern types.
At the profile creation time, the method exploits the similarity
in the workloads’ execution patterns using unsupervised learn-
ing techniques. This task is performed by the profile generator.
The profiles generated expose apriori, static metadata for
matching new workloads. The profile classifier assigns the
profile that best fits the profile metadata characteristics. The
profiles contain rich and specific insights into workload usage
patterns that can be used for improving diverse resource
provisioning strategies, from scheduling to bootstrapping to
proactive monitoring.
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Fig. 3: Concept of the PolarisProfiler model.

Profiling is part of the Polaris project, available at the project
GitHub’s page6. The profiling methodology has been adapted
and applied to the Alibaba PAI data set for this article. It
is essential to consider that profile similarity is based on
unsupervised methods leading to sporadic miss-classifications
and that some workloads are considered outliers, i.e., they
do not belong to a profile. For the performance evaluation
(subsection V-B) we use the Alibaba PAI dataset as the
baseline. This means that if the profiling approach produces
miss-classifications this also negatively affects the sampling
results.

III. MODELLING HETEROGENEOUS INFRASTRUCTURE

A. Infrastructure heterogeneity definition

The Cloud-Edge continuum has many sources of hetero-
geneity that affect infrastructure performance. However, in
this work we focus mainly on hardware, proposing a model
to harness its heterogeneity. We consider heterogeneity that
accounts for static differences in the hardware’s infrastructure,
which is not frequently seen in the literature. This refers to dif-
ferences in the behavior of similar (interchangeable) hardware
components, for instance, the type of CPU cores, the GPU
types, etc. It is important to remark that this heterogeneity
might not be designed nor desired, but the progress in hard-
ware development brings it to any computing infrastructure.
As can be seen from Table I, the different GPU types have

6https://github.com/polaris-slo-cloud/Profiling

a variety of release dates, which influence the final cluster
configuration. Interestingly, one can find many references to
heterogeneous infrastructure in the literature, such as in [18]
or [19]. However, in most cases, heterogeneity comes from
the state of the infrastructure’s consumable resources, so its
heterogeneous configuration of nodes changes with execution
time.

B. Heterogeneity model

Several infrastructure characteristics can be defined as
heterogeneity classes, such as CPU type, GPU type, TPU,
FPGAs, etc. We provide a simplified relative model of the
infrastructure’s heterogeneity. First, we model within the
scope of Intelligent Sampling, and we frame this within a
scheduling pipeline. Hence, we value a fast and differentiated
model classification. And second, the differences between
components of a heterogeneous trait can be very subtle, and
managing this detail is costly. Hence, the model aims to enable
Intelligent Sampling and simplify and enhance the usage of the
computing infrastructure.

As shown in Figure 4, the heterogeneity model has two
layers. The first layer considers whether the infrastructure node
has a specific heterogeneity class. This is a simple distinction,
but it allows a fast classification of resources. Simply put, an
ML training workload should only consider GPU nodes, and
this first layer will enable us to capture similar requirements.
Further, this classification is cost-efficient for the IoT or Edge
tiers where the number of devices is large, and they can have
very specialized hardware. This first layer brings a dichotomy
to the model’s structure, so we differentiate between core
heterogeneity classes and additional heterogeneity classes.
Indeed, all nodes from a computing infrastructure have a CPU
core or RAM, hence these are core heterogeneity classes.
However, some classes might or might not be present in a
node, such as a GPU, storage, or sensors. These are additional
heterogeneous classes. Hence, the first layer of the model only
evaluates if an additional heterogeneity class is included in the
node.

GPU V100 == GPU V100M32
(High, High, High)

Core heterogeneity class Additional heterogeneity class

Heterogeneity type

Characteristics Equivalent heterogeneity type

Specified

Modeled
Equal 

characteristics

CPU core GPU

CPU core x86 GPU V100

GPU V100 = (High, High, High)

Energy efficiency
Computational efficiency
Cost efficiency

First layer

Second layer

Fig. 4: View of the different elements considered in the
proposed heterogeneity model, a simplified example in grey.

The second layer (Figure 4) provides a more detailed
description of the heterogeneity class being considered, which
we call heterogeneity type. Further, this second layer is able
to model arbitrary heterogeneity classes. We follow a similar
approach done in [20]. However, we go one step beyond,
considering computation, energy, and cost efficiency as the



three characteristics of any heterogeneity type. We classify
heterogeneity types for each characteristic as high or low
compared to the other types in the infrastructure. Simply
put, we can model a type of GPU as highly computationally
efficient while being low on energy and cost efficiency. It is
important to remark that this has to be done relative to the
nodes present in the infrastructure. Otherwise, the optimization
capabilities of the scheduling pipeline are not correctly tailored
to the infrastructure. To do so, we leverage the mid-range
value (M), see equation 1, to split each characteristic of any
heterogeneity type as “High” (if above or equal to M) or
“Low” (if below M). We use M conversely of a quantile-
based separation because M is agnostic to the distribution of
data points, i.e., the classification as “High” or “Low” only
depends on the range of values obtained for the heterogeneity
type.

M =
max(x)−min(x)

2
(1)

This abstraction reduces the heterogeneity of the infrastruc-
ture and allows us to define equivalent heterogeneity types.
Simply put, two different GPUs classified as high on compu-
tational efficiency and low on energy and cost efficiency can
be considered the same type. This eases the management of the
infrastructure by reducing its heterogeneity while accounting
for it. Indeed, the granularity chosen is coarse, and it is
possible to have a more fine-grained division, i.e., “High”,
“Mid-high”, “Mid-low”, or “Low”. However, for the scope of
this article, the selected coarse granularity is enough; in future
work, when refining the approach and its implementation,
other divisions can be considered and evaluated.

IV. INTELLIGENT SAMPLING

A. Definitions

• Heterogeneous infrastructure: We define a computing
infrastructure as a set of computing nodes: Infra =
{n1, . . . nk}. Infrastructure nodes can have one or more
heterogeneity classes (Ht), which by definition are con-
stant in time, i.e., at time t0, ni has Hta and Hte,
and this holds true for any other time ti considered.
Further, we assume that the number of nodes k is
much larger than the number of different heterogeneity
traits l in the infrastructure (k >> l). Hence, we can
group the computing nodes by their heterogeneity class:
∀Ht ∈ Infra : Hti = {nα, . . . nγ}. Notice that bold
characters identify sets while the plain character refers
to the shared property of the set. This grouping enables
the querying of nodes with respect to their heterogeneity
class. Notice that we are not differentiating at this stage
if the heterogeneity class is core or additional. Further,
consider that given the definition provided, a node can be
found in more than one group.

• Heterogeneous type: h⃗ti is defined as a three dimen-
sional vector, where i identifies the heterogeneity type.
The class is determined unequivocally by the type. Each
vector dimension specifies the type’s characteristics in

terms of energy-efficient, computation-efficient, and cost-
efficient. Hence, following the defined model, 1 stands
for high efficiency, while 0 represents low efficiency.
We leverage the vector representation to organize the
infrastructure nodes, i.e., all nodes belonging to a het-
erogeneity class (Hti = {nα, . . . nγ}) are now classified
accordingly to their characteristics in a three-dimensional
array. Hence, each possible combination of the character-
istics vector specifies nodes with equivalent heterogeneity
types. We can express it as follows: h⃗t = (x, y, z) =
{nα, . . . nδ}. Notice that the (i) from h⃗t has disappeared
as we are now considering equivalent heterogeneity types.

• Execution: Rn(W ) is defined as the execution of the
workload W in a specific node n of the infrastructure.

• History of execution: is defined as the value of a counter
C that is increased if the execution of the pair n,W is
terminated within the expected requirements for W .

• Workload profiling system: we define a profile as a
group of workloads P = {W0 . . .Wm}) where ∀ W ∈ P
workload characteristics at run-time are differentiable
from workloads (W ′) of other profiles P’. This implies
that the requirements for workloads within the same pro-
file are similar. Hence, we can use its profile to refer to the
incoming workload that requires to be scheduled without
losing knowledge of its requirements and characteristics.

• Random sampling: consists of sampling nodes over an
infrastructure. In other words, randomly selecting a set
of nodes N from Infra = {n1, . . . nk}. The sample
size is a parameter that can be configured and in general:
|N| << |Infra|

• Intelligent Sampling: we define it as the ability of ran-
domly sampling a set of nodes from Htj = {nα . . . nγ},
such that the heterogeneity trait (Htj) is adequate for the
incoming workload belonging to profile P. Similarly, we
consider Intelligent Sampling randomly selecting a set
of nodes from h⃗t, when the characteristics from h⃗t are
required given the profile P.

B. Intelligent Sampling procedure

The Intelligent Sampling procedure can be applied in our
proposed infrastructure model at both the heterogeneity class
level and heterogeneity type level. At the class level, the proce-
dure identifies the adequacy of using additional heterogeneity
classes for the incoming workload. At the type level, the
procedure identifies which specific class instances are better
suited to the workload. Simply put, the first would identify that
the incoming workload should be in a node with a GPU, while
the second would recommend the usage of a GPU T4 instead
of V100. From a formal angle, the procedure is the same for
both cases (class or type). The only difference is that in the first
case a variable (Ht) identifies the heterogeneity class, while
in the second case, a three-dimensional vector (H⃗t) identifies
the heterogeneity type. Next, we show the required steps for
the heterogeneity class (Ht).

In the following, we assume that we do not know the
specific requirements or optimization policies in place, e.g.,



whether the infrastructure provider aims at minimizing en-
ergy consumption. We show how to leverage the history of
executions to unveil the expected heterogeneity classes and
characteristics required for the incoming workload. Hence, we
assume that the history of executions has not been obtained
randomly but through a set of “optimal” decisions.

The Bayes theorem is a powerful tool for describing
and evaluating hypotheses. It allows us to describe different
scenarios (i.e. the performance of a workload given a spe-
cific heterogeneity characteristic) and to evaluate them given
historical data. Hence, we can formulate the hypothesis of
adequacy in terms of posterior probability: P (Ht|P) which
is the probability that a heterogeneity class (Ht) is beneficial
for a workload with profile P. Or in other words which is
the convenient node for a given workload that requires to be
scheduled, however, we are abstracting the node by means
of its heterogeneity trait and the workload as a profile. The
required steps are summarized in Algorithm 1.

Algorithm 1 Intelligent sampling procedure

1: Compute P (P|Ht) ▷ Likelihood of the profile
2: Compute P (Ht) ▷ The prior of the infrastructure
3: Compute P (P) ▷ The marginal probability of the profile
4: Compute P (Ht|P) ▷ The posterior probability
5: Sample nodes according to P (Ht|P)

Hence we compute P (Ht|P) by leveraging the Bayes
theorem:

P (Ht|P) =
P (P|Ht)P (Ht)

P (P)
(2)

When a new workload arrives with its profile specified the
following procedure for each heterogeneity class in the infras-
tructure needs to be executed, i.e., ∀Ht ∈ Infra compute :

1) P (P|Ht): the likelihood, expresses how frequently a
profile P has been executed in a node with an hetero-
geneity class Ht. We leverage the history of executions
and compute it as the ratio between the number of times
that P has been executed on Ht divided by the total
times that P has been executed. Notice that we use Ht
to consider all nodes that have this specific heterogeneity
class:

P (P|Ht) =
CP,Ht

CP,−
(3)

a) CP,Ht corresponds to the counter C of execution
of any workload of the profile P in any node
containing the heterogeneity trait Ht.

b) CP,− corresponds to the counter C of execution of
any workload of the profile P in any node of the
infrastructure.

2) P (Ht): the prior, describes how common is the hetero-
geneity trait Ht among all infrastructure nodes:

P (Ht) =
|Ht|

|Infra|
(4)

a) |Ht| is the cardinality of the set of nodes with the
heterogeneity trait.

b) |Infra| is the number of nodes in the infrastruc-
ture.

Interestingly, in the case of having a scheduler with
specific preferences over a type of node, that could be
expressed in terms of the prior, i.e., the prior probability
could be tweaked to incorporate infrastructure usage
policies.

3) P (P): is the marginal probability of the profile P (P),
and expresses in which conditions the profile has been
executed in the infrastructure regardless of the het-
erogeneity class, hence to obtain this ”regardless” we
marginalize over Ht as seen in the formula:

P (P) =
∑

∀Ht∈Infra

P (P|Ht)P (Ht) (5)

To compute this last term it is just required to compute
steps (1) and (2) for each heterogeneity class in the
infrastructure and sum them.

Assuming that the number of heterogeneity classes is much
lower than the number of nodes (k >> l) in a large-scale dis-
tributed and heterogeneous infrastructure, the required terms
to compute P (Ht|P) can be easily pre-computed, updating
their values after each successful execution.

4) P (Ht|P) is computed following Equation 2 providing
a posterior probability of the usage of a specific hetero-
geneity class for the incoming profile.

5) Finally, we could sample over each of the Hti a number
of times proportional to the result of P (Ht|P). How-
ever, there are several specific policies that can be ap-
plied at this stage depending on the overall infrastructure
management strategy.

V. CASE STUDY & PERFORMANCE EVALUATION

A. Case study

To clarify the model, we will apply it to the Alibaba
Platform of Artificial Intelligent (PAI) [13], we can find 2
types of nodes: those containing a GPU and those without
a GPU (named CPU). Then, among the nodes with a GPU,
there is the following classification, according to the GPU
type: P100, T4, V100, V100M32, and MISC. The MISC
category groups old GPU versions such as the K80. Hence,
there is a first layer of the model that specifies if the node
has GPU or not. Then, if the node has a GPU we can
go to the second layer of the model. GPUs are classified
according to their power consumption, computational capacity,
and cost7. Figure 5 shows their values for each aspect, obtained
from [21]–[24]. Notice that for visualization purposes V100*
corresponds to V100M32, also consider that the specific cost
for V100M32 has not been found and it has been assigned the
same as the V100. Considering these values, we can use the

7The cost is obtained from “GPU pricing — Compute Engine: Virtual
Machines (VMs),” Google Cloud. https://cloud.google.com/compute/gpus-
pricing (accessed Feb. 14, 2023). The price for the V100M32 is assumed
to be the same as for the V100



Fig. 5: Characteristics of each heterogeneity trait (GPU type)
with respect to each heterogeneity aspect (Energy efficiency,
Computation efficiency, and Cost efficiency).

mid-range value (M), equation 1, to split each characteristic
as “High” or “Low”. Table I follows the example of the GPU
type, but we can foresee these tables per infrastructure class.

TABLE I: GPU types modeled with respect to each hetero-
geneity characteristic.

k80 P100 T4 V100 V100M32
Energy-efficiency Low Low High Low Low
Computation-efficiency Low Low Low High High
Cost-efficiency High Low High Low Low
Date Nov 2014 Jun 2016 Sep 2018 Jun 2017 May 2017

At this point, given a request for a GPU with a set of
specific characteristics Table I can identify the type of GPUs
required and then expose them to the sampler. Further, Table I
shows that GPU models V100 and V100M32 are equivalent
heterogeneity types. Hence they are always exposed to the
sampler under the same conditions. It can be anticipated that
all combinations might not be present in the infrastructure.
Similarly, a greedy policy looking only for a “High” value
in all fields is not realistic, given that these characteristics
generally require a certain level of compromise among them.
We envision the possibility of requesting a specific charac-
teristic (or two of them), leaving the others unspecified. In
such a case, it could be specified a GPU with “High” Cost-
efficiency, while ignoring the other two characteristics. Then,
following the previous example, we would have GPU types
K80 and T4 behaving like equivalent heterogeneity types.
This type of aggregation can ease the resource management
modules of the infrastructure. Finally, while the information
on the convenient heterogeneity class for the workload comes
from the profile description, the suggested characteristics
defining the heterogeneity type are envisioned to be set by
the infrastructure provider to optimize its usage. Nevertheless,
with the improvement and fine-grained tuning of the profiles,
heterogeneity types options could also be defined at the profile
level. In such a situation, the logic on the infrastructure
provider side is expected to make the decisions, e.g., a sample
only from the types requested through the profile, a sample
from all aggregated options, etc.

From the model use case, we make several observations.
First, we can see that heterogeneity is not only at design

(i.e., variety on Edge computing devices), but it is part of
the computing infrastructure evolution, we see in Table I 5
types of GPU in only 4 years of difference. Second, we
realize that the differences in the 3 modeled characteristics
are significant. In addition, the 3 characteristics used are not
correlated, meaning that the usage of equivalent classes not
using the 3 characteristics can provide different and adjustable
results. Similarly, we see that there is no time-wise correlation,
i.e., the newest GPU is not the best in all characteristics.
Last, we see that using the mid-range value performs well
to separate GPU types, however, the P100 is close to the
mid-range value in 2 out of 3 characteristics. Hence, with
the increase of heterogeneity types and the will to use the
model to perform infrastructure usage optimizations a more
fine-grained metric can be used to classify the characteristics.

B. Performance evaluation

The evaluation of Intelligent Sampling is in comparison to
other state-of-the-art sampling approaches. We aim to show
that Intelligent Sampling is a better option in terms of sampling
accuracy and execution time. We choose 3 of the most well-
known sampling approaches: Random sampling (RS), Round-
robin sampling (RR), and Least recently used (LR). In brief,
RS will randomly sample infrastructure nodes, RR will shuffle
the infrastructure nodes and then sample them in order, and
finally, LR will favor sampling the less used nodes in the
infrastructure. We define the sampling accuracy (Accs) in a
multi-class classification problem as follows:

Accs =
|Correctly selected nodes|

|All selected nodes|
(6)

Consider that the absence of true negatives and using an
averaged value (micro) for the Fscore makes it equivalent to
accuracy, the metric computation has leveraged Scikit-learn
Python package [25].

The analysis is based on the Alibaba PAI dataset [13].
Hence, a node is correctly selected if it matches the one
selected from the Alibaba PAI dataset. We use the description
of their infrastructure and the data of the executed workloads.
Hence, we will sample nodes for 5 000 randomized incoming
workloads. For each incoming workload, all infrastructure
nodes will be available. We are evaluating the sampling
capacity, allowing us to marginalize the available resources
of the infrastructure. The total number of nodes sampled will
depend on the experiment. Also, the accuracy provided for
each experiment is averaged over all incoming workloads and
the 10 repetitions performed. Time is averaged over the 10
repetitions but aggregated for the incoming workloads. Hence,
if we want an idea of the sampling time required for 1
workload, we should divide the obtained values by 5 000.

The following assumptions are taken into account for the
evaluation. Only successfully completed workloads are consid-
ered; hence, the scheduling decision is considered the correct
one. The nodes without GPU are regarded as if they had a
different heterogeneity type of GPU. This is done because the
number of nodes without GPU is minimal, and for research
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Fig. 6: Evaluation of the Intelligent Sampling against RS,
RR, and LR algorithms, when the total number of nodes for
sampling is circa 2 000. The experiment is averaged over ten
repetitions.

purposes looked more interesting having a wider variety of
heterogeneity types rather than discarding 5% of the nodes
at an early stage. The workload profiling results are inherited
from another work (under acceptance of publication), and we
use the results obtained there. It is important to remark that
the profiling mechanism leaves a quarter of the workloads
without an associated profile as outliers. Hence, when a
workload comes with an outlier label, Intelligent Sampling
applies random sampling to get the sampled nodes.

The first experiment, see Figure 6, evaluates the capacity
of the 4 strategies to get increasingly larger samples of nodes
(precisely 2%, 5%, 10%, and 25%) over a fixed infrastructure
setting (i.e., the one defined in [13]). In Figure 6a, we see
the accuracy of the methods. Notice that Intelligent Sampling
without profile is applying random sampling. Interestingly its
behavior is below the random sampling approach identifying
that such workloads are not similar to the others. In any case,
we can see an outperform of Intelligent Sampling, achieving
more than 60% accuracy on the sample, while the other
methods are around 25%. Notice that in Figure 6a the vertical
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(a) Sampling accuracy with respect to the number of nodes sampled,
averaged over 5 000 incoming workloads.
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(b) Aggregated time required to sample nodes for 5 000 incoming
workloads.

Fig. 7: Evaluation of the Intelligent Sampling against RS,
RR, and LR algorithms, when the total number of nodes for
sampling is circa 200 000. The experiment is averaged over
10 repetitions.

markers are showing the standard deviation of the accuracy.
Figure 6b shows the time required to sample nodes for all
incoming workloads averaged over the ten repetitions, we see
in all cases a linear increase in time for the number of nodes
sampling, and we see Intelligent Sampling being slower than
RS or RR, but much faster than LR. In this case, the standard
deviation is not visible and the dots are just marking the
evaluated points.

The second experiment, see Figure 7, is similar to the
previous one. The aim is to sample an increasing number
of nodes, as previously 2%, 5%, 10%, and 25%. But the
infrastructure is expanded in a simulated manner to circa
200 000 nodes, keeping the nodes’ proportion from the original
infrastructure. From Figure 7a, we can see that the accuracy
obtained is the same as in the previous experiment, again in
this Figure the vertical markers indicate the standard deviation.
Also, the measured time is linear and keeps the same order in
the long run; see Figure 7b.

Finally, in the third experiment, we keep constant the
number of nodes sampled (100) but increase the infrastruc-
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Fig. 8: Evaluation of the scalability when the number of nodes
increases, but the sampling size is fixed (100 nodes).

ture’s size. The infrastructure expansion is simulated, keeping
constant the ratio of node types. This experiment aims at
discovering if the scale of the infrastructure plays a role in
the performance of the sampling method when the number of
nodes to sample is fixed. We find that in terms of accuracy,
it has the same behavior as in the two previous experiments.
However, we can see in Figure 8 that the sampling time is
constant for Intelligent Sampling as well as RS and RR, while
linear for LR. This behavior was expected given that Intelligent
Sampling, RS, and RR only operation on the data is retrieving
a fixed number of data points, while LR has to read and write
on the data, which penalizes the total time.

VI. RELATED WORK

A. Sampling methods for scheduling in large-scale, heteroge-
neous, and distributed computing infrastructures

There is a plethora of articles and work in scheduling. If
interested, the reader can refer to [26], [27] for Edge-specific
scenarios. It is important to remark that both surveys detect
scalability and infrastructure heterogeneity as key research
challenges for the community, which are the topics we aim
to address in this work. An interesting review focusing on
scheduling for IoT and micro-services applications is done by
Pallewatta et al. [28]. There, we can also find research gaps in
terms of infrastructure heterogeneity and system scalability.
Finally, for a Cloud K8s-specific survey on scheduling, one
can refer to the work of Carrion et al. [29], where scalability
is also seen as a required future work. However, due to
the homogeneity assumption in Cloud infrastructure, device
heterogeneity is not deeply addressed.

As briefly mentioned in the introduction, sampling, and
auctioning are the two main approaches to scheduling in large-
scale, heterogeneous, and distributed infrastructures. Sampling
consists of randomly selecting a set of candidate nodes
(resources) for the workload and assessing their suitability
instead of doing it with the entire infrastructure [10]. Auc-
tioning moves the responsibility to the nodes (resources),
who are in charge of bidding for the workload [12], and the
highest bid takes it. Inconveniently, this methodology falls

short when dealing with common scheduling requirements
such as affinity/anti-affinity placement of workloads due to
outsourcing the decision to individual cluster nodes.

In general, random sampling has been very successful in
large-scale and homogeneous infrastructures, as shown in [10].
More recent works include other sampling solutions for het-
erogeneous infrastructures [30]. However, their statistical guar-
antees on sample quality make their samples large, hampering
system scalability.

As a side note for sampling methods, the advent of federated
learning in the Edge provides new sampling strategies to select
nodes [31]. However, these methods are specifically tailored
to the FL algorithm’s needs, not suitable for a more generic
problem. Nevertheless, synergies between the two research
fields can eventually arise.

B. Heterogeneous infrastructure

Most of the literature on heterogeneous infrastructure fo-
cuses on dynamic characteristics, e.g., CPU, memory, net-
work [18], [32]. Further, to the best of our knowledge, there is
limited work proposing models, classifications, or taxonomies
for heterogeneous computing infrastructure. However, working
toward computing continuum systems forces to take into
account heterogeneity and models or taxonomies will be
required to include and eventually manage the whole spectrum
of computing devices, from IoT hardware [33] to FPGAs [34],
GPUs [35], or TPUs [36].

Many survey papers in the literature provide taxonomies
for resource management at the Edge [27], [37]–[39], but,
as explained in [38], the works tackling heterogeneous Edge
computing resources are at its infancy.

In general, the modeling of computing resources aims at
understanding their behavior towards predictability, as done
in [40], but this fine-grained modeling is not well-suited
when managing large-scale systems. Interestingly, the work of
Shukla et al. [20] deals with heterogeneous CPU core types
and provides a model based on the energy efficiency and
service capacity used as a basis to build our generic approach
to model heterogeneous infrastructure.

VII. CONCLUSION

Intelligent Sampling enables precise and scalable sampling
over large-scale and heterogeneous computing infrastructures,
a cornerstone for ML clusters, Edge Computing, and the
computing continuum. The model and the method presented in
this article can leverage computing infrastructure heterogeneity
while keeping the complexity hidden from the scheduler.

The experiments show that the overall results are satis-
factory. We have demonstrated that Intelligent Sampling can
achieve a sampling accuracy of more than 60% regardless of
the sample size, while its competitors barely reach 25%. This
means that in a sample from Intelligent Sampling we would
have 3 out of 5 nodes containing the specific heterogeneity
class, while when using other state-of-the-art methods we
would have only 1 out of 4. Time-wise, Intelligent Sampling is
slightly slower than RS and RR; however, it behaves similarly,



i.e., the sampling time is constant when the sample size is
maintained but the infrastructure increases (see Figure 8).

In future work, we will define the precise implementation
of Intelligent Sampling on a real computing infrastructure.
We also aim to research different sampling policies. Simply
put, we are sampling proportional to the posterior probability,
but, as an example, we could take the type of node with
the maximum posterior probability. Further, we can study
the performance of these policies considering the quality and
quantity of data gathered from the cluster usage and the
incoming workloads, framing the problem in the classical
exploitation/exploration trade-off. We will develop system-
wide tests to evaluate the benefits of the infrastructure model.

In a broader scope, we will keep looking at the sources
of heterogeneity in Cloud-Edge computing systems to iden-
tify their characteristics and provide techniques and models
capable to leverage them.
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