
PolarisProfiler: A Novel Metadata-Based Profiling Approach for Optimizing Resource
Management in the Edge-Cloud Continnum

Andrea Morichetta†, Vı́ctor Casamayor Pujol†, Stefan Nastic†, Schahram Dustdar†,
Deepak Vij∗, Ying Xiong∗, Zhaobo Zhang∗

†TU Wien surname@dsg.tuwien.ac.at, ∗Futurewei Technologies, Inc.

Abstract—Resource provisioning is vital in large-scale, geo-
graphically distributed, and hierarchically organized infrastruc-
tures, and, at the same time, it represents one of the stiffest
challenges in their management. The goal is to optimally allocate
infrastructure resources to jobs, ensuring jobs’ Service Level
Objectives (SLOs) while retaining high resource utilization across
the entire resource pool. In this context, accurate workload
profiling is crucial to achieving optimal resource management,
giving more context to the system. However, approaches either
make static guesses or use runtime profiling – that may be
delayed by sandbox testing – and fall short in providing fast and
accurate information. We aim to overcome these challenges with
a novel profiling approach and methodology, the PolarisProfiler.
We discard the consistency assumptions and assume a broader
and less influenced perspective. We use apriori available, static
metadata to enable generic and immediate job profiling based
on historic execution traces. The PolarisProfiler proposes a novel
dynamic profiling model, a generic workload profile generator,
and a metadata-based profile classifier. We illustrate the practical
feasibility of our approach by evaluating the PolarisProfiler in a
case study. We target machine learning workloads, leveraging a
publicly available dataset from Alibaba. We offer a reference im-
plementation of our profiling methodology, combining a density-
based hierarchical clustering technique and an interpretable
decision-tree model for the classifier. We test the PolarisProfiler
for job duration estimation. Despite being based solely on static,
apriori metadata, we obtain convincing results compared to the
state-of-the-art, yielding an estimation error rate of 5% for the
80% of profiled jobs.

I. INTRODUCTION

Optimal resource provisioning in virtualized and shared
computing infrastructures is one of the main challenges faced
by infrastructure providers and operators [1]. The core ques-
tion is how to enforce Service Level Objectives (SLOs) while
retaining high resource utilization across the entire resource
pool, whether in a Kubernetes cluster in the Cloud or in
a KubeEdge [2] cluster at the Edge. Current resource pro-
visioning and management techniques try to address chal-
lenges such as workload scheduling and placement, resource
overcommitment and oversubscription models [3], resource
bursting [4], and live migration. Workload characterization
plays an important role in many of the solutions trying to
facilitate resource provisioning in the Edge-Cloud continuum.
The most notable technique for workload characterization is
so-called workload profiling.

Workload profiling: state of the art and limitations. The
main approaches to workload profiling can be classified into
one of two general categories: (a) they either attempt to exploit
available information about past workload executions (histor-
ical data) to learn the workload’s characteristics or (b) they

attempt to collect information about the workload’s properties
by actively observing it - usually by running the workload in
a sandbox and probing it with synthetic traffic. Furthermore,
they make at least one of the following assumptions: (i) Envi-
ronment consistency - that is, they assume that the sandboxed
execution environment used for profiling faithfully resembles
the production execution environment; (ii) Performance con-
sistency - that is, the runtime performance of similar workloads
will remain consistent over time. (iii) Time consistency - that
is, there are no time constraints on how long it takes to make
profiling decisions, i.e., the workload profile can be created ad
hoc when needed; (iv) Occurrence consistency - that is, the
same workload will run multiple times, and it will reoccur in
the same shared computing environment in the (near) future.

Unfortunately, these assumptions typically do not hold in
practice. (i) The execution environment is typically inconsis-
tent across multiple workload runs. The primary reason is the
infrastructure heterogeneity resulting from software and hard-
ware updates, such as adding a new generation processor [5].
Additionally, due to phenomena known as “noisy neighbors,”
the existing physical resources available in a host node can
significantly vary. This scenario can cause significant vari-
ance in workload performance, rendering the profiles useless.
(ii) Further, several authors have pointed out that the runtime
performance of similar workloads is not consistent during
their lifetime. It typically varies with time, even if the same
preconditions are met, such as using the same input data [6],
[7]. (iii) The time allocated to the profiler to generate the
workload’s profile can significantly vary. It is use-case specific
and typically inconsistent for different resource provisioning
techniques. For example, time spent profiling a workload while
it is pending to be scheduled must be orders of magnitude
shorter than profiling a workload to prevent a bootstrapping
problem when predicting SLO violations. (iv) Finally, previous
work has shown that most general-purpose workloads are
recurrent only to a limited degree, that is, only between 40%
and 60% of workloads are reported to be recurrent [8], [7], [9].
By only looking at a single workload’s history, approximately
every other workload will fail to be successfully profiled.

Research challenges and requirements. We identified the
following research challenges that result from the inherent
lack of consistency along time, performance, occurrence,
and environmental dimensions. The main research challenges
which motivate our work are: (RC-1) How can we derive
accurate workload profiles in the face of a small sample
size caused by non-recurrent workloads? (RC-2) How can we

II POLARISPROFILER MODEL & METHODOLOGY

represent profiled characteristics so that they can capture the
workloads’ performance variance? (RC-3) How can we make
the profiling process general, non-invasive, and transparent so
that it can seamlessly facilitate various resource provisioning
and management techniques?

To address the RC-1, we take a pragmatic approach to
increase the sample size by continuously analyzing all avail-
able workloads from a shared infrastructure. Our approach
must only utilize the de-facto standard data, which is typically
readily available for any virtualized computing infrastructure.
Further, to make our approach practically scalable, we need
to be able to derive the profiles in a fully automated manner.
Finally, to make our approach generic, it must not rely on any
particular assumption and precondition regarding the data and
its preprocessing or preparation, e.g., feature engineering.

Addressing RC-2 requires a novel view of profile repre-
sentation. Specifically, it is necessary to move away from
traditional profiles, which attempt to represent the workload’s
runtime properties as static profile characteristics and cannot
capture their intrinsic performance variance. Instead, we need
to adopt dynamic concepts that capture varying degrees of
confidence and naturally reflect workloads’ performance vari-
ance. Finally, to capture performance variance faithfully, we
must characterize the profiles based on actual data collected
from the production virtualized infrastructure.

Finally, we need to build agile profiling decisions to address
the RC-3 and make our approach generally useful for various
resource provisioning and management techniques. We want
to assign the profiles as soon as a new workload arrives (to
be non-invasive). Furthermore, we want to base the profile
assignment on widely adopted and well-known information,
such as the workload’s metadata (to be transparent).

Contributions. In this paper, we introduce PolarisProfiler
– a novel profiling approach that leverages apriori available,
static metadata to enable generic and immediate workload
profiling based on historic execution traces. More specifically,
the main contributions include:

• A generic workload profile generator, that automati-
cally derives workload profiles for shared computing
infrastructure, based only on the readily available re-
source usage data, without any specific assumptions (e.g.,
specifically-tailored feature engineering).

• A novel model for representing dynamic profiles, which
can be used to capture the dynamic nature of the work-
load’s runtime properties. Our dynamic profiles can be
continuously updated, even after initial workload profil-
ing, to reflect the workload’s varying performance over
time.

• A metadata-based profile classifier, which efficiently clas-
sifies new workloads and assigns runtime profiles to
them by only considering their apriori available, static
metadata. This way, new workloads get nearly instantly
assigned to profiles.

• A comprehensive case study, which describes an example
implementation of our profiling methodology. Despite
only relying on static, apriori metadata, our methodology

yields an error rate below 5% for the 80% of classified
workloads. These results are competitive with the state-
of-the-art approaches, with the difference that their spe-
cific focus is the estimation of AI workloads duration.

We publicly release the code to allow transparency and
reproducibility of our results1.

II. POLARISPROFILER MODEL & METHODOLOGY

PolarisProfiler derives profiles from a continuous and global
characterization of workloads’ infrastructure usage. The goal
of PolarisProfiler is to profile new workloads solely leveraging
information that is known at workload deployment time.

PolarisProfiler

Profile
generator

ML
model:
"BERT"

OS:
"Linux"

New workload

Apriori Metadata Workload Types

Profile 2

Profile n

Profile 1

Generated by

Generated by

Generated by

Mapped by ML

Mapped by ML

Mapped by ML

Profile
classifier

CPU usage:
max 99, std 24,

avg ...
Memory usage:
max 32, std 5,

avg ...

Fig. 1: Overview of the PolarisProfiler’s model

A. Model

Figure 1 gives an overview of the PolarisProfiler’s model.
Every profile exposes apriori, static metadata for matching
new workloads. We use the term apriori to specify that
we collect metadata information available at the submission
(deployment or provisioning) phase. Examples are user data,
application data, and OS parameters. The term static identi-
fies invariant metadata. It represents core characteristics that
remain stable during the workload life cycle. This metadata is
input for the profile classifier. This model assigns the workload
to the profile that best matches its metadata characteristics
(left side of Fig. 1). Hence, we link the submitted workload
to the profile’s dynamic characteristics. Thus, we leverage the
profile runtime information to design appropriate optimization
strategies before the workload executes.

The profiles summarize the runtime features of similar
workload traces (right side of Fig. 1). At creation time, we
look at the similarity in the workloads’ execution pattern
concerning resource usage. We collect and use a combina-
tion of resource usage records over time in aggregated form
(e.g., average, quantiles, and deviation) or raw. This way,
we have an accurate and information-rich multidimensional
representation of workloads and their behavior over time. This
approach lets us deal with RC-2, i.e., the representation of

1https://github.com/polaris-slo-cloud/Profiling/edit/master/ml data-
profiling/README.md

2

https://github.com/polaris-slo-cloud/Profiling/edit/master/ml_data-profiling/README.md
https://github.com/polaris-slo-cloud/Profiling/edit/master/ml_data-profiling/README.md

II POLARISPROFILER MODEL & METHODOLOGY

profile information. This way, we know that they will end
up in a group, which includes similar processes that behave
consistently. Furthermore, thanks to the fact that we use static
and a priori metadata, we avoid sandboxing. The richness of
the proposed profile enables the extraction of n-dimensional
trends, anomalies, and seasonalities from the profile resource
records.

B. Workload profile generator
Figure 2 depicts the two main processes for generating and

assigning profiles. The first process is the Workloads’ profiles
generator (top box in Figure 2); it is in charge of generating
or updating representative profiles. The second process is the
metadata-based profiles classifier (bottom box of Figure 2);
it is responsible for associating incoming workload to the
profiles via apriori, static metadata.

Group workloads

User ID
Task ID
Priority

Resources requested
DL model

...

CPU usage
Memory usage

GPU usage
Duration

...

Machine learning
Manual labeling

...
Infrastructure descriptive

Custom optimization targets

Profiler for new metadata
Explainable

Re-configurable

Random decision forest
1 vs all classifier

TF-IDF
...

Workload
historical

infrastructure
usage

Set of profiles

Workloads' profiles generator

Metadata-based profiles classifier

Apriori static
metadata classifier

Workload
historical
metadata

Metadata Classification
and

Knowledge extraction

Fig. 2: Overview of PolarisProfiler’s main components and
processes (partial view).

The workloads’ profiles generator uses historical workloads
usage traces to address RC-2, i.e., describe the workloads’
runtime properties. The traces include CPU, memory, GPU,
disk usage, or execution duration measures. The role of the
workloads’ profiles generator is to create profiles that summa-
rize similar workloads usage patterns. A basic approach is to
use manual labeling. This approach requires a series of well-
defined guidelines and rules to ensure accuracy and consis-
tency. Furthermore, this process requires the work of multiple
people to ensure quality, and it needs regular reviews and
updates. Although formally feasible, at-scale manual labeling
can be an impractical solution [10], [11], and rules updating
can be cumbersome. Therefore, machine learning techniques
can be more efficient and effective. A possible solution is semi-
supervised techniques [12]. We can learn underlying patterns
in the data through a small set of labeled entries. Still, label
definition is challenging and always relies on static rules.
Therefore, unsupervised learning techniques, which do not
need any previous knowledge. For example, clustering [13],
[14], [15] (eventually with the help of autoencoders [16])
represent for us the preferred solution as they can discover
patterns.

Services
data

Infrastructure
optimization needs

System optimization

Continuous improvement

Continuous update New
workload

Metadata-based
profile generation

Fig. 3: High-level perspective of the methodology for resource
provisioning techniques.

Each profile contains relevant and specific workloads in-
sights gained from clustering them. At the same time, it
assembles the apriori, static metadata associated with each
workload it integrates. We use the profiles to implement
resource provisioning strategies, e.g., workload bootstrapping,
predictive monitoring, or improving resource management
by estimating workload duration, as shown in §III-D. In
summary, using the introduced mechanisms and techniques,
the Workloads’ profiles generator addresses RC-1 and RC-2
and provides the input for RC-3.

C. Metadata-based profile classifier

The next step is to guarantee the association of new
workloads to profiles through metadata. This process should
be “fast” (where this notion depends on the target goal),
scalable, and flexible. The implementation options include
manually extracting information and defining rules or using
automated mechanisms. Again, at scale, manual approaches
are unsuitable. Therefore, we look at automatable machine
learning methods to provide better results and faster updates.
Generally, we can handle this as a nearest neighbor problem
or a multi-label classification problem (e.g., through rule-
based models or decision trees). Alternatively, we can use
neural networks. However, neural networks do not guarantee
interpretability, an essential property for making decisions
transparent. For this reason, we rely on white box models;
in particular, we select a specific variation of decision trees
or random forests, eXtreme Gradient Boosting (XGBoost).
This method improves on the Gradient Boosting Tree (GBT);
it handles sparse input data and distributes and scales the
execution efficiently [17].

To conclude, we use workloads’ a priori static metadata to
classify it into a profile leveraging a decision tree method.
This process addresses RC-3 and the time and computational
constraints imposed. While we provide examples of relevant
metadata features (as in Figure 2, bottom), we do not bind our-
selves to any predefined set; an accurate metadata taxonomy
is out of this paper’s scope.

D. Application in resource provisioning techniques

For the PolarisProfiler, we envision a continuous improve-
ment process. Figure 3 clarifies our perspective, providing a
high-level overview. In such scenarios, the workload typically
arrives with a set of static metadata features and infrastructure
demands. The information flow we aim to produce with our
approach leads to two paths. First, the new workload gets a

3

III CASE STUDY

profile assignment that aids the system’s resource provisioning
strategies to make the best decision. At the same time, when
the workload starts, we store the workload’s runtime behavior,
thus updating and enriching the selected profiles. With this
feedback loop, we continuously improve infrastructure usage.
At the same time, by monitoring the PolarisProfile, we can
recognize when the profiles’ definition or classification is
deteriorating, thus triggering actions like re-clustering.

The PolarisProfiler aims to solve various concerns in
resource provisioning and management. First, it can help
the scheduling process by facilitating more informed deci-
sions [18]. Knowing the profile of a workload apriori can help
in sampling more suitable machines [19] and filtering and scor-
ing the ones best tailored to that model to serve the request.
Furthermore, *aaS solutions must satisfy users’ SLOs [1],
[20]. In this regard, achieving it in the bootstrapping phase
takes work. There is a need to bring an application online and
satisfy the defined SLOs by only leveraging little information.
In this context, the PolarisProfiler provides the information
needed to assess the application behavior. If we consider
FaaS, there is a gap in how to tailor the correct resources
from a heterogenous infrastructure [21], [22], [23] for specific
functions. Here, the PolarisProfiler aids in pairing the function
characteristics with the most appropriate node configuration by
highlighting patterns in node usage and application behavior.
Finally, the upsurge of machine learning (ML) is bringing in
a new, complex class of workload. As we show in this paper,
the PolarisProfiler provides tools and mechanisms to infer ML
workload characteristics, like resource usage and duration, and
use the infrastructure better.

III. CASE STUDY

We provide a reference implementation of PolarisProfiler
and its main profiling processes. Specifically, we develop a
profiling approach to optimize the scheduling of Machine
Learning (ML) workloads. In our use case, we focus on
assessing the workload duration as it is a crucial feature to
plan and schedule workloads around it, ensuring efficient use
of resources while meeting SLOs.

The rationale for targeting machine learning workload is
that it represents a current challenge for large and distributed
systems [24]. The need for a large amount of data and an
increased necessity for the computing power of energy poses
serious questions [25] and calls for optimization strategies
from the AI and systems communities. Furthermore, the
variety of algorithms and the specific behavior of ML models
push to consider more dimensions in the search for resource
usage patterns and optimize their use to guarantee the best
and the most transparent service for users [26]. Therefore, we
cannot only rely on CPU metrics.

Our study considers two months of ML job traces from
the Alibaba Platform for Artificial Intelligence (PAI) [27].
The platform’s main target is businesses within the Alibaba
group. It enables AI pipelines, offering different levels of
abstraction, from a canvas UI where the users can drag and
connect the elements for their pipeline to containers. Once

TABLE I: Stratified sampling of 100 001 elements based on
the workload metadata feature.

Workload Size Sampled size
bert 10 940 142 29 818
ctr 9 128 957 24 881
graphlearn 4 888 371 13 323
inception 10 781 289 29 385
nmt 13 537 37
resnet 60 863 166
rl 849 626 2 316
vgg 11 768 32
xlnet 15 632 43
Total size 36 690 185 100 001

submitted, the supported frameworks 2 translate each workload
into tasks with different roles, e.g., parameter servers (PS)
and workers for a training job and evaluator for inference.
Each task has one or more instances, deployed using Docker,
and can run on multiple machines. This dataset is relevant
for our case study as it shows several key characteristics.
First of all, it contains real traces, reporting real machine
usage. Furthermore, it discloses descriptive static and apriori
metadata. The most suitable metadata contained in Alibaba’s
dataset is the user’s name (user), the job name (job name), the
model used (workload), and the type of the task, e.g., if it is
training or inference and which architecture uses (task name).
Plus, the Alibaba trace comes with a group tag, i.e., meta-
information specified by tasks, such as entry scripts, command
line parameters, data source, and sinks.

We initially take an outsider perspective regarding the
Alibaba dataset, where we do not have insights about the
system. First, we construct our case study filtering out all
the jobs that are not terminated since we do not have the
resources usage information for them, obtaining circa 36
million instances. Then, we use stratified sampling to reduce
the set to a manageable size. We base the stratification on
the workload type, which, through the model names, gives
us an explicit and more transparent understanding of the jobs
and their instances. We extract a dataset D with a cardinality
|D| = 100 001 elements. Table I shows the categories and
their sampled sizes. Our goal is to create homogeneous profiles
from the infrastructure usage perspective. Thus, we rely on 17
usage metrics.3

Consequently, we need to understand if we can build a
dynamic profile model, i.e., if we can look at the historical
workload in the infrastructure and find profiles that contain
workloads that expose similar behavior. In our case, we
rely on the Hopkins statistics [28]. This test measures the
“clusterability” of data, relying on the hypothesis that the data
follows a Poisson point process. It outputs a score: if equal
or above 0.3, the data have random distribution; the closer the
values go to zero, the more the data could follow clusters. We

2PAI accepts frameworks like TensorFlow, PyTorch, Graph-Learn, and
RLlib.

3Namely: the number of instances for that job (inst num), the starting and
ending time (start time and end time), the planned resource usages (plan
cpu, plan mem, and plan gpu. Plus, the dynamic utilization metrics like CPU
usage, memory usage (average and maximum), GPU usage, GPU memory
usage (average and maximum), number of inputs and outputs (read count
and write count), number of bytes exchanged (read, and write) and the total
job duration.

4

III CASE STUDY

TABLE II: Results of preliminary data analysis on the most
verbose static apriori metadata features.

Metadata
feature(s)

Avg. Silhouette score
Euclidean Cosine Manhattan

Workload 0.17 0.03 0.21
Task name -0.07 -0.19 -0.10
(Workload, Task name) 0.02 -0.01 0.08

rely on the Python pyclustertend library for our analysis,
that uses as default distance “Minkowski,” which results in the
standard Euclidean distance.4, 5 For the set D, the Hopkins
score is 0.0033, letting us believe in the possibility of obtaining
meaningful profiles.

A. Fixed labeling

As we point out in the introduction, most profiling methods
rely on occurrence consistency [8], [7], [9]. Therefore, we
assemble a baseline test to evaluate the performance of single
or combined static apriori metadata if set as profile labels. The
idea is to mimic the “expert” view, which uses information
about the workload. For this task, we rely on workload and
task name, who represent the most intelligible metadata.

We analyze how well a single or a small group of meta-
data features can group workload that behave similarly, i.e.,
that is close in our 17-dimensional problem (considering the
17 resource utilization metrics). For the evaluation, we use
the well-established unsupervised metric Silhouette coefficient
(silhouette) [29] (SCscore). It tells in a [−1, 1] range how
well each point lies within its group.6 For a better assessment,
we consider three distance measures: Euclidean, Cosine, and
Manhattan. Table II summarizes the findings. The results
suggest difficulty identifying homogeneous groups, i.e., points
with the silhouette strictly greater than 0. However, workload
labels contain relevant, but not sufficient, information for
distinguishing the workloads. In this case, the Manhattan
distance performs better than the other. Having a transversal
look at the distance metrics, the Cosine distance is the one
that provides more uncertain results, probably due to its use
mainly related to categorical data. This analysis suggests that
a combination of metadata labels will be required to identify
profiles, further, leveraging workload’s historical resource us-
age will also ensure that the obtained groups are cohesive. The
goal is to have profiles that prove to be more cohesive than the
groups obtained in this baseline test using just one metadata
label.

B. Developing the workload profile generator

After establishing our baseline, we inspect methods for
generating profiles. In particular, we aim at building dynamic
profiles as previously described. In this case, we need to
explore methodologies that can help us extract homogeneous
groups in an unsupervised way. In this context, clustering is
amongst the most popular approaches. Three main categories
of clustering are partitional, hierarchical, and density-based.

4https://pyclustertend.readthedocs.io/en/master/
5https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

BallTree.html
6values closer to 1 representing a better fit

TABLE III: Parameters for the clustering grid search.

Search Category Values

Model HDBSCAN
OPTICS

Data transformation

StandardScaler
MinMaxScaler
RobustScaler
PowerTransform

Distance metric Euclidean
Manhattan

Min cluster points 50, 100, 200, 300, 400, 600, 1 000

Density-based methods offer two main features that fit our
case study. First, they do not require us to specify the desired
number of clusters apriori. Second, they generate an “outliers’
group,” i.e., workloads not fitting any cluster. This last charac-
teristic lets us explore irregular workloads and detect peculiar
behaviors. We aim to have fine-grained clustering; therefore,
we focus on methods that generate groups at different data
densities. The main algorithms are HDBSCAN [30], [31] and
OPTICS [32].

At first, we evaluate the best configuration for HDBSCAN
and OPTICS on the case study dataset D. The first parameter
we examine is the data transformation tool for the dynamic
workload feature. We consider the StandardScaler, the Min-
MaxScaler, the RobustScaler – particularly suitable for noisy
datasets – and the PowerTransform, which produces a mono-
tonic transformation. An essential element in clustering is the
distance metric. For our scenario, we choose the Euclidean and
the Manhattan. Finally, both HDBSCAN and OPTICS need to
input a parameter specifying the number of minimum points
per cluster, MinPoints. We choose a range that includes the
potential advantage of having many small and accurate clusters
and the possibility of large representative groups. Table III
summarizes the parameters.

We extract several statistics for each clustering result (C).
We consider the number of clusters generated, how many
outliers O the clustering detects, and the average cluster size.
Furthermore, we rely on unsupervised performance metrics,
such as the overall SCscore and the Davies Bouldin Score
(DB Score). In addition, in our use case, we want to max-
imize the number of clustered points to have a significant
representation in the profiles. Finally, we want to have an
adequate number of clusters. We want to have more than one
big group and avoid many small clusters. Therefore, we look
at having a good balance between the number of clusters
and their cardinality (mean |C|). Table IV summarizes the
main statistics for HDBSCAN and OPTICS. We can see how
HDBSCAN fits our requirements better, as highlighted in bold
in Table IV. Additionally, we show how clustering techniques
can accurately deduce profiles of homogeneous workloads.

1) HDBSCAN evaluation

Here, we inspect the results of the selected HDBSCAN
approach for generating dynamic profile models. First, we
examine the performance in terms of cluster separation, relying
again on the SCscore. We keep out from this analysis the “out-

5

https://pyclustertend.readthedocs.io/en/master/
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

III CASE STUDY

TABLE IV: Summary of the clustering results

#
outliers

#
clusters

mean
|C|

avg
SCscore

DB
score

HDBSCAN

mean 40331.1 68.6 1993.6 0.44 1.52
min 18059 10 254.9 0.23 1.19
max 64770 243 5859.5 0.65 2.01
std 11124.0 70.3 1509.3 0.08 0.19

OPTICS

mean 79578.3 66.2 889.5 0.60 1.19
min 66708 1 120.6 -1.00 0.98
max 98936 271 2979.5 0.81 1.40
std 7643.2 79.3 752.1 0.20 0.10

liers group.” 7 Overall, clusters 8 and 9 have a good SCscore,
despite their large size. Profiles 5, 6, and 11 are the ones that
have the best SCscore. Their low cardinality and sample fit
suggest that they represent particular and homogeneous job
instances. However, profile 10 has a significant amount of not
well-fitted samples. Even if this last behavior is not negligible,
it is unrealistic to expect perfect results with such cardinality.
Overall, the results are well grounded and show how, in the
case study, HDBSCAN is a good candidate to implement our
workload profile generator.

6 5 22241511 2 16 3 13 4 1410 0 18192023 8 25 9 7 2117 1 12 -1
Cluster labels

0

200

400

600

800

1000

C
PU

U
sa

ge min std = 0.8
cluster 6

max std = 197.2
outliers -1

avg std = 45.4

(a) CPU usage.

5 6 4 2114191720101118 2 1522241613 3 7 1 12 9 2325 8 0 -1
Cluster labels

0
20
40
60
80

100
120
140

G
PU

us
ag

e min std = 0.0
cluster 5

max std = 15.6
outliers -1

avg std = 3.3

(b) GPU working utilization.

Fig. 4: Boxplot representing the features distribution in the
clustered profiles.

a) Dynamic infrastructure usage data
We now represent the range of workloads performance

within the profiles to understand the core dynamic profile
model. In detail, we examine the distribution of resource usage
values across the profiles and their variability in each cluster.
Figure 4 depicts the results. Due to the page limit, we focus
on the most representative features for the case study: CPU
usageand GPU utilization. The figure shows the boxplots of
the feature values grouped by the cluster labels. The plots sort
the profiles, in the x-axis, by the considered feature standard
deviation, in ascending order; higher values are at the right
of the plot. We sort by the standard deviation to highlight

7We refer to the image HDBSCAN_silh_results_box.pdf in our
repository for the visualization.

the value of cohesiveness within each profile. The y-axis
shows, for each feature, their values.The green and red text
boxes report the minimum and maximum standard deviation,
respectively. The turquoise lines and boxes show the average
standard deviation value instead.

The overall results show that most of the profiles have
relatively low variation. The exception is the “outliers group,”
labeled as “-1,” which naturally contains all the workloads that
do not fit in the main profiles. A particular case is maximum
memory usage, where profile 18 has a broader value range than
the outliers group. As a possible cause, this profile contains
few workload samples and might include peculiar workloads.
On the contrary, sizeable profiles, like 8 and 9, show a good
homogeneity, with generally few noisy points present. Overall,
this first analysis suggests that the HDBSCAN clustering has
managed to find homogeneous groups of jobs. Furthermore,
such representation demonstrates the contribution of profiles
to the estimation of the runtime characteristics of a workload.

b) Metadata
Analyzing the metadata in the clusters is essential for RC-

3, i.e., assigning profiles to new workloads. 8 For seven out
of ten jobs, most of the values end in profiles 8 and 9,
suggesting that these large groups contain various but similar
workloads. These two profiles include, for the large part, “bert”
workload. Furthermore, besides the “rl” workload, which char-
acterizes profiles 5 and 6, the other workload feature values
are scattered in the other clusters. Moreover, the clustering
approach discarded the “resnet,” “nmt,” and “vgg” values.
Looking at the cardinality of these values, which is lower
than 500 – our minimum cluster size – we can understand
why they are not in clusters. Indeed, the last four values
for task name distribution all have a cardinality below 200.
These results show how the HDBSCAN-based profiling helps
to distinguish workloads in the case study. This outcome is
significant, considering that different workloads might show
different patterns. Finally, some users and groups have a higher
representation than others in the profiles pair 8 and 9 or the
19 and 20 pair. These two groups mainly refer to “bert,” as
previously seen, and “graphlearn.” This outcome suggests that
certain users focus on specific implementations, like “bert”
and “graphlearn” and that these implementations have very
specific meta-information embedded in the “group” metadata.
Ultimately, this outline of the metadata distribution suggests
that the clustering based on dynamic data can identify patterns
in the metadata features and that combining these values in
input can lead to accurately detecting profiles.

C. Developing the metadata-based profile classifier

The final, essential step in the presented methodology is
assigning a profile to newly submitted workloads. This task has
to happen fast and by leveraging static, apriori metadata. We
illustrate through the case study how to build such a classifier
and discuss its performance. Furthermore, besides assigning
new jobs to the profiles, we aim to understand the relevance of

8Related heatmap figures in the repository.

6

III CASE STUDY

metadata features in the decision-making process through the
model, which maps the input to the labels. Therefore, we rely
on the interpretable eXtreem Gradient Boosting (XGBoost)
classification model due to its performance in classifying and
its white box characteristics.

1) Training the classifier
We use the dataset of clustered elements DC , leaving out

the outliers group. From each clustered workload, we extract
their static, apriori metadata features, namely: job name, user,
task name, group, and workload. Overall we obtain a set
with a cardinality of 75 398 and a dimension of 5, i.e., the
metadata features. For the model generation, we subdivide
the collection in training and validation sets, with an 80-
20 ratio. The XGBoost algorithm has limited support for
categorical data. So, we must transform the input features
into numerical ones. Valid approaches are one-hot encoding or
recurring to the embedding networks. The latter requires a long
training time; therefore, we use the former approach. After this
transformation, the set dimension grows to 21 547. We store
the data as a sparse matrix to optimize the computation. In
this case, we use the standard hyperparameters for XGBoost.
Our aim in the case study is to analyze its performance and
avoid overfitting.

Table V summarizes the results on the validation set per
profile. We can appreciate that the results are excellent for
most of the profiles, except for profile 6, where the classifier
can not correctly label any of its points. In general, we obtain
an accuracy of 95.19% and a weighted avg F1-Score of 90%.
Overall, the results show a good capability of the trained
model in predicting profiles independently from their size
and starting just from apriori knowledge about a workload
and its instance(s). This result gives us a promising path
towards reproducing the proposed profiling approach, given
the selected case study scenario where the granularity of
information is partially insightful. Furthermore, the sample
selected and the resulting profiles extracted from it are wide-
ranged enough to constitute a complex undertaking for the
model. Finally, an additional advantage of this approach is the
speed with which the model can label new workloads. We do
not need any dry runs on sandboxes or runtime profiling.

2) Results explanation
A key feature is to obtain explainable results. We achieve

that using the SHAP eXplainable AI (XAI) approach [33],
[34], of the top twenty features in the XGBoost model. 9

Particularly relevant are the task name in its “ps” value,
the graphlearn workload type, and a specific user. The task
name: “ps” category refers to using a Parameter Server (PS)
architecture for models’ training. In this case, one or more
nodes play the role of a PS, broadcasting current weights
to learners before each step and aggregating gradients from
them, which is an easy way to retain a global view [35], [36].
This behavior might represent a demarcation with other train-
ing architecture. Similarly, Graph Neural Networks (GNNs)

9The figure SHAP_summaryplot_allclasses.pdf is available in
the repository

10−2 10−1 100 101 102

RMSEperc values

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

5

(a) CDF of the RMSEperc in the
duration prediction test.

0 200100 300

RMSEperc values

0
1
7
8
9

10
12
13
14
17
18
19
20
21
23
25

Pr
ofi

le
s

(b) Boxplot of the RMSEperc aggre-
gated by the profile labels predicted for
the points in the set.

Fig. 5: Summary of the RMSEperc results for the duration
prediction test.

(workload: “graphlearn”) have a very distinct behavior as
they deal with graph data in the input. In particular, their
distributed execution using Alibaba’s developed framework
can differentiate them from other workloads. The same goes
for the NLP model labeled as (workload: “bert”), which
characterizes profiles 8 and 9. Furthermore, the job name
94b340f2cdedf37303d41bf2 is the most recurrent in
our dataset, and it occurs in profiles 5 and 6. If we link this
outcome with what we found in §III-B1, we can match that
these two clusters had very specific and defined resource usage
values with a constantly low standard deviation. Therefore,
it is easy to associate this metadata with a relevant decision
boundary. Overall, the use of the SHAP explainability tool
reinforces the idea of our profiling approach, i.e., that the static
apriori metadata represents a suitable and rich vehicle to match
jobs to distinct profiles.

D. Test case: predicting the jobs’ duration

Finally, we test the capability of profiles to embed relevant
information. To do so, we extract a set of 1 000 workloads
Jsample randomly sampling them from the dataset and making
sure they are not part of our train and validation set. Once the
classifier assigns each of the sampled workloads j ∈ Jsample

to a profile p ∈ P , we use the average duration d̂p to assign
the workload the predicted duration. Naturally, other more
sophisticated approaches can be better for the estimation other
than the mean; we leave this aspect for future research work.
Afterward, we use the normalized Root Mean Squared Error
RMSEperc to compute the loss between d̂p and the actual
job duration d̂j .

Figure 5a gives us a high-level understanding of how this
approach predicts duration values. It shows the Cumulative
Density Function (CDF) of the RMSEperc. The RMSEperc

is below the 5% for 80% of the samples, as depicted in
the highlighted blue area. 90% of the predictions have an
RMSEperc error below the 20%. However, Figure 5a high-
lights some outliers, with RMSEperc values even above 1 000
%. We aim to identify these outliers better in Figure 5b, which
shows the boxplots representing the RMSEperc values for
each profile. The outliers, rimmed by the red circle, are the
ones with RMSEperc values above 100%, as highlighted by
the green area at the left of the plot. We can see that they

7

IV RELATED WORK

TABLE V: Class-level classification score reports.

Profile 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 macro
avg

weight.
avg

precision 0.90 0.99 1.00 1.00 1.00 0.66 0.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.97 0.84 0.99 0.84 0.93 0.95
recall 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.99 0.30 1.00 0.90 0.95
f1-score 0.94 1.00 1.00 0.99 1.00 0.80 0.00 0.96 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.91 0.46 0.91 0.90 0.94
support 415 1172 177 607 143 134 68 134 2509 2316 128 64 1104 468 135 158 370 116 99 435 437 57 383 1489 426 1536 15080 15080

belong to two profiles, namely, 12, and 21. Overall, these
results show both the quality of the profiling approach and
the optimization possibilities the methodology brings. In brief,
by leveraging the profiling methodology developed in this use
case and simply using the average value duration for each
profile, we have been able to predict the duration of 80%
of the workloads with an error of only 5%. This capability
opens a wide range of optimization capabilities for Cloud
infrastructure by leveraging already available metadata.

IV. RELATED WORK

A. Profiling

Building statistics and extracting workload patterns has
increased interest in the last decades. For example, Dryad [37]
extracted workload statistics for the distributed workload. The
research developed more sophisticated approaches from that
time, given new computational and methodological capabili-
ties. Ahn Vu Do et al. [38] used Canonical Correlation Analy-
sis to find the relationship between performance and resource
usage, relying on the “consistency” assumptions. In terms
of building profiles that estimate SLO-related parameters,
Sinan [39] offers an ML-fueled approach to help reduce QoS
violations. The models predict the application performance
given specific resource allocation measures. PARTIES [40]
offers online profiling. As Kairos and SLearn approach, it uses
runtime information, discarding apriori knowledge, highlight-
ing the difficulties of having information from user-submitted
workloads. On the same line, Kaushik et al. [41] profile
application at runtime for improving vertical scaling. Inagaki
et al. [42] worked on profiling microservices to detect runtime
bottlenecks. Gibilisco et al. [43] also focus on runtime profile
sampling for Spark performance. Manner et al. [44] perform
dynamic profiling through simulations. Rao et al. [45] combine
static and dynamic profiling with a focus on Spark. On the
contrary, we use available static metadata as any workload
is submitted, making the apriori matching trouble-free. Other
works [46], [47], [48] collect “offline” runtime information,
running the workloads in exclusive mode. This approach,
though, suffers from the environment’s inconsistency.

Recently, most of the research focused on characterizing
Machine Learning workload. Some works [49], [50] approach
the profiling using historical execution traces containing hard-
ware attributes and runtime data to forecast the duration of
a DNN’s training iteration. Aryl [51] leveraging the former
approach to estimate the DNN workload duration, using the
history of the runs of the same workload. SCHEDTUNE [52]
leverages historical execution traces to build profiles to predict
resource usage. Our case study differentiates from that as we
follow a more generic approach, i.e., we do not focus solely
on training and do not consider hardware assumptions.

On the contrary, we are more generic and resilient to
environmental and infrastructure changes. Based on Habitat,
EOP [53] aims at characterizing deep learning inference tasks
by looking at three main characteristics of the DNN, such
as the batch size, Height-weight-weight, and Height-weight-
weight. Again, this approach targets a narrow problem and
makes strong apriori assumptions on the features that can
better represent the workloads. Shin et al. [54] developed an
approach to profile the workload of AI applications. Their
focus is on preventing out-of-memory cases by studying Ten-
sorFlow internals. Conversely, we do not look at the internals
of a specific framework. Instead, we use static and easy-to-
obtain metadata.

Similarly to our method, Hu et al. [55] rank workloads using
GPU time, correlating it to attributes, such as workload name,
user, and submission time. They leverage these attributes to
predict the workloads’ priority in scheduling. This approach
follows a similar methodology. However, we aim to provide
a more generic approach to automatically extract these cor-
relations and patterns. InfaaS [56] proposes using statically-
profiled metadata, plus the tracking of dynamic state for high-
level-requirement-based distributed inference serving. Other
works [57], [13] use unsupervised approaches for workload
characterizations and mapping. CloudCluster [14] is instead
a method for clustering VM-to-VM traffic. Carver [58] uses
statistical approaches to extract relevant features in storage
systems. Fibratus is a method developed by Horovitz et
al. [59] to correlate service-specific protocol data patterns with
transactional flow patterns to provide additional insights for
performance profiling using a hierarchical clustering method.
While they share with our work the idea of not being in-
trusive with monitoring, they focus on clustering network
traces. Kattepur et al. [60] have a methodology in principle
similar to our approach, but, in practice, runtime based and
focusing on robotics through fog networks. However, unlike
the previous approaches, we use static, apriori, and readily
available metadata to assign the new workload to profiles.

B. Workload duration estimation

Runtime estimates are a common practice used by mod-
ern scheduling systems to make decisions. Previous work
used offline-based approaches to estimate the duration of
workloads [8], [61] These works estimate the duration by
using assumptions on specific features, e.g., task type and
dataset size. Instead, our work relies on a generic approach
that uses old dynamic information to infer the specific static
and apriori metadata features to detect homogeneous profiles.
Other approaches, like 3Sigma [6], rely on the total historical
workload duration distributions to predict how long the new
workloads will start. Similarly, Weng et al. [27] use the
Alibaba dataset past estimation and a set of fixed parameters,

8

V CONCLUSIONS

i.e., group and user, to estimate the workload completion
time. Conversely, we create specific profiles to address such
challenges. Other contributions follow different approaches.
Kairos [62] does not require any a priori knowledge of task
runtime. Instead, Kairos employs preemption to estimate the
predicted remaining runtime of tasks from when they have
already been completed. Similarly, Jajoo et al. [5] propose a
learning-in-space approach (SLearn). They select and schedule
only a portion of each workload’s tasks. This method takes ad-
vantage of the similarities between the runtime characteristics
of the tasks inside a single workload. Still, these and similar
online approaches are subject to “environment inconsistency.”

V. CONCLUSIONS

This paper introduced the PolarisProfiler, a novel method-
ology for profiling workload using only easily accessible
resource usage information to build the profiles and static
and apriori metadata features for workload assignment. We
initially took a conceptual perspective, delineating the main
characteristics of our definition of profiles. Further, we intro-
duced the main tools and methodologies. We then consolidated
our approach conceptualization, evaluating it through a case
study. We conducted a comprehensive analysis of real ML
workload traces, leveraging the Alibaba dataset. With this case
study, we delivered two primary outcomes. Firstly, we outlined
practical methods and algorithms to implement the previously
defined conceptual approaches. We showed how clustering
could help to build profiles and how white box classifiers,
like XGBoost, can map new workloads to profiles based
on metadata. Secondly, we presented how this approach can
achieve good results on coarse-grained ML workload profiles,
showing how an unsupervised, assumption-agnostic approach
can provide precise workload duration estimation. Finally, we
delineated challenges and roadmaps for future improvement
of the presented method.

In the future, we intend to utilize the PolarisProfiler to
optimize several problems. One of our future research goals
is to use our profiling approach natively when designing SLO
policies. To achieve this, we intend to embed its support in
SLO Script, a language for implementing complex cloud-
native elasticity-driven SLOs [63]. Furthermore, we want to
explore profiling in the context of serverless management,
where there is a need for better approaches for SLO aware-
ness [23]. In addition, we are applying profiling to the various
stages of scheduling, as already established in [19]. We also
intend to extend the current PolarisProfiler in several direc-
tions. An essential part of the profiles is to be dynamic and
adapt to changing workloads and environments. Therefore,
we aim to develop strategies to adjust profiles at runtime.
One way we would explore is constantly updating the profiles
with the new, related workload and periodically re-cluster the
underperforming ones. Furthermore, we want to improve the
generalization of our approach, making it work with various
objectives other than duration. This direction requires us to
consider better prediction models for both the final SLO
objective and the PolarisProfiler building blocks. For example,

we aim at improving the extraction of the profile metadata
from the clustering, e.g., employing vector-like representation
of the metadata using autoencoders.

REFERENCES

[1] S. Nastic et al., “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[2] Y. Xiong et al., “Extend cloud to edge with kubeedge,” in 2018
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
373–377.

[3] R. Householder et al., “On cloud-based oversubscription,” International
Journal of Engineering Trends and Technology (IJETT), vol. 8, no. 8,
pp. 425–431, 2014.

[4] S. M. Noonan, “Managing resource bursting,” Aug. 16 2016, uS Patent
9,417,902.

[5] A. Jajoo et al., “A case for task sampling based learning for cluster job
scheduling,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 19–33.

[6] J. W. Park et al., “3sigma: distribution-based cluster scheduling for run-
time uncertainty,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–17.

[7] S. A. Jyothi et al., “Morpheus: Towards automated {SLOs} for en-
terprise clusters,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 117–134.

[8] A. D. Ferguson et al., “Jockey: guaranteed job latency in data parallel
clusters,” in Proceedings of the 7th ACM european conference on
Computer Systems, 2012, pp. 99–112.

[9] V. Jalaparti et al., “Network-aware scheduling for data-parallel jobs: Plan
when you can,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 407–420, 2015.

[10] D. Abadi et al., “The beckman report on database research,” Communi-
cations of the ACM, vol. 59, no. 2, pp. 92–99, 2016.

[11] M. Stonebraker et al., “Data curation at scale: the data tamer system.”
in Cidr, vol. 2013, 2013.

[12] T. Khan et al., “Workload forecasting and energy state estimation in
cloud data centres: Ml-centric approach,” Future Generation Computer
Systems, vol. 128, pp. 320–332, 2022.

[13] J. L. Berral et al., “{AI4DL}: Mining behaviors of deep learning
workloads for resource management,” in 12th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 20), 2020.

[14] W. Pang et al., “{CloudCluster}: Unearthing the functional structure of
a cloud service,” in 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), 2022, pp. 1213–1230.

[15] H. Wang and B. Li, “Lube: Mitigating bottlenecks in wide area data
analytics,” in 9th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 17), 2017.

[16] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.
2011, pp. 1–19, 2011.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[18] S. Nastic et al., “Polaris scheduler: Edge sensitive and slo aware
workload scheduling in cloud-edge-iot clusters,” in 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). IEEE, 2021,
pp. 206–216.

[19] V. Casamayor Pujol et al., “Intelligent sampling: A novel approach to
optimize workload scheduling in large-scale heterogeneous computing
continuum,” in 2023 18th Annual System of Systems Engineering Con-
ference (SOSE), (to appear), 2023.

[20] T. Pusztai et al., “A novel middleware for efficiently implementing
complex cloud-native slos,” in IEEE 14th International Conference on
Cloud Computing (CLOUD), 2021.

[21] Q. Zhang et al., “Harmony: Dynamic heterogeneity-aware resource
provisioning in the cloud,” in 2013 IEEE 33rd International Conference
on Distributed Computing Systems. IEEE, 2013, pp. 510–519.

[22] S. Nastic et al., “A serverless computing fabric for edge & cloud,” in
4th IEEE International Conference on Cognitive Machine Intelligence
(CogMi), 2022.

[23] P. Raith et al., “Serverless edge computing—where we are and what lies
ahead,” IEEE Internet Computing, vol. 27, no. 3, pp. 50–64, 2023.

[24] J. Verbraeken et al., “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

9

V CONCLUSIONS

[25] E. M. Bender et al., “On the dangers of stochastic parrots: Can language
models be too big?” in Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, 2021, pp. 610–623.

[26] C. Wan et al., “Are machine learning cloud apis used correctly?” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 125–137.

[27] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling in
large-scale heterogeneous GPU clusters,” in 19th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 22), 2022.

[28] A. Banerjee and R. N. Dave, “Validating clusters using the hopkins
statistic,” in 2004 IEEE International conference on fuzzy systems (IEEE
Cat. No. 04CH37542), vol. 1. IEEE, 2004, pp. 149–153.

[29] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[30] R. J. Campello et al., “Density-based clustering based on hierarchical
density estimates,” in Pacific-Asia conference on knowledge discovery
and data mining. Springer, 2013, pp. 160–172.

[31] L. McInnes and J. Healy, “Accelerated hierarchical density based cluster-
ing,” in 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), Nov 2017, pp. 33–42.

[32] M. Ankerst et al., “Optics: ordering points to identify the clustering
structure,” in ACM Sigmod record, vol. 28, no. 2. ACM, 1999, pp.
49–60.

[33] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[34] S. M. Lundberg et al., “From local explanations to global understanding
with explainable ai for trees,” Nature machine intelligence, vol. 2, no. 1,
pp. 56–67, 2020.

[35] M. Wang et al., “Characterizing deep learning training workloads
on alibaba-pai,” in 2019 IEEE international symposium on workload
characterization (IISWC). IEEE, 2019, pp. 189–202.

[36] S. Li et al., “Taming unbalanced training workloads in deep learning
with partial collective operations,” in Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 45–61.

[37] M. Isard et al., “Dryad: distributed data-parallel programs from sequen-
tial building blocks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, 2007, pp. 59–72.

[38] A. V. Do et al., “Profiling applications for virtual machine placement in
clouds,” in 2011 IEEE 4th international conference on cloud computing.
IEEE, 2011, pp. 660–667.

[39] Y. Zhang et al., “Sinan: Ml-based and qos-aware resource management
for cloud microservices,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 167–181.

[40] S. Chen et al., “Parties: Qos-aware resource partitioning for multiple
interactive services,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 107–120.

[41] P. Kaushik et al., “A study of contributing factors to power aware
vertical scaling of deadline constrained applications,” in 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD). IEEE, 2022,
pp. 500–510.

[42] T. Inagaki et al., “Detecting layered bottlenecks in microservices,”
in 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD). IEEE, 2022, pp. 385–396.

[43] G. P. Gibilisco et al., “Stage aware performance modeling of dag
based in memory analytic platforms,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 2016, pp. 188–195.

[44] J. Manner et al., “Optimizing cloud function configuration via local
simulations,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, 2021, pp. 168–178.

[45] B. Rao et al., “Soda: A semantics-aware optimization framework for
data-intensive applications using hybrid program analysis,” in 2021 IEEE
14th International Conference On Cloud Computing (CLOUD). IEEE,
2021, pp. 433–444.

[46] D. Narayanan et al., “{Heterogeneity-Aware} cluster scheduling policies
for deep learning workloads,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 481–498.

[47] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 595–610.

[48] K. Mahajan et al., “Themis: Fair and efficient {GPU} cluster schedul-
ing,” in 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), 2020, pp. 289–304.

[49] G. Yeung et al., “Towards {GPU} utilization prediction for cloud deep
learning,” in 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[50] X. Y. Geoffrey et al., “Habitat: A {Runtime-Based} computational per-
formance predictor for deep neural network training,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 503–521.

[51] J. Li et al., “Aryl: An elastic cluster scheduler for deep learning,” arXiv
preprint arXiv:2202.07896, 2022.

[52] H. Albahar et al., “Schedtune: A heterogeneity-aware gpu scheduler for
deep learning,” in 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2022, pp. 695–705.

[53] Y. Xu et al., “Eop: efficient operator partition for deep learning inference
over edge servers,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2022, pp.
45–57.

[54] C. Shin et al., “Xonar: Profiling-based job orderer for distributed
deep learning,” in 2022 IEEE 15th International Conference on Cloud
Computing (CLOUD). IEEE, 2022, pp. 112–114.

[55] Q. Hu et al., “Characterization and prediction of deep learning workloads
in large-scale gpu datacenters,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[56] F. Romero et al., “{INFaaS}: Automated model-less inference serving,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021,
pp. 397–411.

[57] D. Van Aken et al., “Automatic database management system tuning
through large-scale machine learning,” in Proceedings of the 2017 ACM
international conference on management of data, 2017, pp. 1009–1024.

[58] Z. Cao et al., “Carver: Finding important parameters for storage system
tuning,” in 18th USENIX Conference on File and Storage Technologies
(FAST 20), 2020, pp. 43–57.

[59] S. Horovitz et al., “Non-intrusive cloud application transaction pattern
discovery,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 311–320.

[60] A. Kattepur et al., “A-priori estimation of computation times in fog
networked robotics,” in 2017 IEEE international conference on edge
computing (EDGE). IEEE, 2017, pp. 9–16.

[61] K. Karanasos et al., “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), 2015, pp. 485–497.

[62] P. Delgado et al., “Kairos: Preemptive data center scheduling without
runtime estimates,” in Proceedings of the ACM Symposium on Cloud
Computing, 2018, pp. 135–148.

[63] T. Pusztai et al., “Slo script: A novel language for implementing complex
cloud-native elasticity-driven slos,” in IEEE International Conference on
Web Services (ICWS), 2021.

10

	Introduction
	PolarisProfiler Model & Methodology
	Model
	Workload profile generator
	Metadata-based profile classifier
	Application in resource provisioning techniques

	Case Study
	Fixed labeling
	Developing the workload profile generator
	HDBSCAN evaluation

	Developing the metadata-based profile classifier
	Training the classifier
	Results explanation

	Test case: predicting the jobs' duration

	Related work
	Profiling
	Workload duration estimation

	Conclusions
	References

