
A Programming Model for Context-Aware
Applications in Large-Scale Pervasive Systems

Sanjin Sehic, Fei Li, Stefan Nastic, and Schahram Dustdar
Distributed Systems Group

Information Systems Institute
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040 Vienna, Austria

Email: {s.sehic, f.li, s.nastic, s.dustdar}@infosys.tuwien.ac.at

Abstract—
In recent years, new business and research opportunities have

been increasingly emerging in the field of large-scale context-
aware pervasive systems (e.g. pervasive health-care, city traffic
monitoring, environmental monitoring, smart grids). These large-
scale pervasive systems are characterized by the need to employ
large number of context sources, process massive amounts of real-
time context data, provide services to numerous context-aware
applications, and cope with higher volatility of the environment.

This paper proposes the Origins Model — a programming
model for context-aware applications in large-scale pervasive
systems. In the Origins Model, an origin is an abstraction of any
source of context information. Origins are universal, discoverable,
composable, migratable, and replicable components that are asso-
ciated with type and meta-information. They create an adequate
foundation for the development of context-aware applications.
Based on them, four processing operations are defined in the
Origins Model: filter, infer, aggregate, and compose. As such,
these operations provide a powerful mechanism to express a rich
set of processing schemes in context-aware applications. Based on
the Origins Model, we present the Origins Toolkit — a proof-of-
concept implementation developed using the Scala programming
language and the Akka toolkit to provide a distributed, scalable,
and fault-tolerant solution.

I. INTRODUCTION

Context-awareness is one of the cornerstones of pervasive
computing [1, 2]. It refers to the idea that an application
can understand its context, reason about its current situation,
and perform suitable operations based on this knowledge.
Moreover, as the situation changes over time, the application
should adapt its behavior according to new circumstances.
In pervasive systems, context information is gathered from
numerous heterogeneous context sources. These sources are
mostly low-level sensors that are unaware of application
requirements and context information acquired from such
sensors is too fine-grained and low-level for context-aware
applications to consume. Thus, the task of pervasive systems
is to hide the complexity of acquiring context information
from context sources, allow this information to be processed to
create higher-level context information, and provide context-
aware applications with an easy interface to retrieve the context
information and adapt to its changes accordingly.

Recent years showed emerging trends in business and re-
search to utilize large-scale pervasive systems. Examples of

such trends are pervasive health-care, city traffic scheduling,
environmental monitoring, and smart grids. These systems
differ significantly from conventional context-aware systems,
which focus on a limited personal context in relatively con-
trolled environments (e.g. smart homes and offices). Such
large-scale pervasive systems are characterized by the need
to employ large number of context sources in acquisition
of context information and, consequently, have to process
massive amounts of real-time context data for numerous and
diverse context-aware applications. Furthermore, large-scale
pervasive systems also need to cope with higher volatility
of the environment. Context sources are connected through
geographically distributed, heterogeneous, and unreliable net-
works. Failures and unexpected delays to acquire context
information are inevitable. It is imperative for such large-
scale pervasive systems to have a dedicated programming
model that transparently deals with these challenges and offers
context-aware applications with a scalable solution to obtain
and process context information.

This paper presents the Origins Model and the Origins
Toolkit. The Origins Model is a programming model for
the development of context-aware applications in large-scale
pervasive systems. Its design allows a large-scale pervasive
system to provide a flexible infrastructure and to easily scale
with the increase in the number of context-aware applications
and the volume of data that they require. The core idea
in the Origins Model is that origins provide an adequate
abstraction to represent any type of context source like sen-
sors, web services, databases, files, and even compositions of
other origins. They are universal, discoverable, composable,
migratable, and replicable components that are associated with
type and meta-information and create an elementary building
block in the development of context-aware applications. Based
on the origins, four processing operations are defined in the
Origins Model, namely filtering, inference, aggregation, and
composition, that further support the development of context-
aware applications. They provide a powerful mechanism to
express a rich set of processing schemes by using either a
single one of them or a composition thereof. Based on the
Origins Model, we present the Origins Toolkit as a proof-of-
concept implementation developed using the Scala program-

2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-4673-1430-5/12/$31.00 ©2012 IEEE 142

ming language1 and the Akka toolkit2. The implementation
uses actors [3, 4, 5], futures [6], and promise pipelining [7]
to provide a distributed, scalable, and fault-tolerant solution.

The paper is structured as follows: the related work is
surveyed in Section II. The Origins Model and key concepts
behind the programming model are introduced in Section III.
Section IV presents the Origins Toolkit, an implementation
of the Origins Model. Finally, Section V concludes the paper
with the future work.

II. RELATED WORK

Due to the usual scale of pervasive systems and context-
aware applications, past research studies in the field have not
been focused on creating a dedicated programming model (i.e.
an abstraction) to ease the understanding and development of
large-scale pervasive systems and context-aware applications.

The Technology for Enabling Awareness (TEA) project
and its successors aimed at augmenting mobile devices and
everyday environments with context-awareness. The TEA ar-
chitecture is a layered architecture that can synthesize context
information from a heterogeneous set of sensors [8]. Similarly,
the Context Toolkit provides a programmatic support for the
development of context-aware applications [9, 10]. The Con-
text Toolkit incorporates various services related to gathering
and provisioning of context information, including encapsu-
lation of context, access to context information, storage, and
a client-server infrastructure. Both the TEA and the Context
Toolkit are examples of the context-aware programming mod-
els for building embedded context-aware applications typically
using sensors on different devices. Very little support for the
distributed environmental sensing was provided. For example,
obtaining meta-information about sensors (e.g. sensor’s loca-
tion) in the environment was not directly addressed.

More distributed frameworks and architectures for context
acquisition, management and usage were examined in the
Pervasive, Autonomic, Context-aware Environment (PACE)
project and in the Java Context-Awareness Framework (JCAF).
The PACE infrastructure aims at facilitating the development
of context-aware applications through provisioning of gen-
erally required programming functionality like context gath-
ering, context management, and context dissemination [11].
JCAF is a Java-based service-oriented run-time infrastructure
and API for the creation of context-aware applications [12].
The JCAF run-time infrastructure emphasizes security and
privacy in an environment of distributed and cooperating
services that acquire context information through Context
Monitors and Context Actuators. It enables interested ap-
plications to subscribe to relevant context events through
an event-based publish-subscribe mechanism. Although both
solutions provide distributed programming models, they were
targeting relatively contained domains, such as smart homes
and smart offices, and did not provide any mechanisms to scale
their solutions pragmatically. For example, after the system is

1http://www.scala-lang.org/
2http://akka.io/

deployed, it is very hard to extend it with new computational
resources to cope with an increased number of sensors.

More recently, there has been research in developing
a broker-based programming model for context-aware sys-
tems [13, 14, 15]. For example, the Context Casting
(C-CAST) [15] project proposed a broker-based context-
provisioning system that is supported by the publish-subscribe
mechanism. Components in C-CAST take role of either a
context provider or a context consumer. The task of the context
broker is to hold registrations of all context providers and
offer it as a directory service for context consumers. The
biggest concern with the broker-based programming model
is the centralization of the knowledge of the whole system
in the context broker. The context broker mediates almost
all communication between context consumers and producers,
which inherently limits the ability of the system to scale.

In our previous research, we developed the COPAL mid-
dleware [16] and provided a macro language for rapid de-
velopment of context-aware applications [17]. The COPAL
middleware provides a run-time infrastructure for the context
provisioning and was part of the smart homes infrastructure
developed in the SM4ALL project3. Context provisioning
refers to the approach of acquiring, processing and disseminat-
ing context information in order to raise context-awareness in
applications. Despite having a distributed programming model
based on complex event processing, the concepts defined in
the COPAL middleware also did not scale well beyond the
context-aware pervasive systems of the size of smart homes.

In summary, prior research studies in programming models
for development of context-aware applications were suitable
only for small and relatively confined environments like smart
homes or offices. Not much effort was put into allowing
systems and programming models to scale beyond these sizes.
As such, there is a significant gap between the vision of the
context-awareness in pervasive computing from [1, 2] and the
current state-of-the-art with respect to size and scalability of
previously proposed context-aware programming models.

III. THE ORIGINS MODEL

The Origins Model (Fig. 1) is a programming model that
provides a flexible abstraction of large-scale pervasive systems.
The main driving force in the design of the Origins Model
was to ease the development of context-aware applications.
Moreover, its design allows large-scale pervasive systems to
gracefully scale up with respect to increase in the number of
context-aware applications and context sources.

The primary idea behind the design of the Origins Model
is that all context sources can be defined as origins. More
formally, an origin is an abstraction of a single context
source in pervasive systems. Thus, origins define elementary
components in the development of context-aware applications.

A. Origin’s Design

In pervasive systems, any information that can be acquired
and is relevant in describing the environment is considered

3http://www.sm4all-project.eu

143

Legend

Pervasive system

Or

Or

Or Or

Or

Or Or

CA CA CA CA

CS CS CS CS

• Universal
• Discoverable
• Composable
• Migratable
• Replicable

CA Contex-aware application

Or Origin

CS Contex source

Data flow

Origin

• Type
• Meta-Info

Or

CS

Fig. 1. The Origins Model

context information [18]. In the Origins Model, origins provide
an universal interface for context-aware applications to access
context information. They acquire the context information
from any source that can provide them with information about
the environment like sensors, web services, files, databases,
and even compositions of other origins. The actual mechanism
that an origin uses to acquire context information is irrelevant
for context-aware applications and is therefore hidden. This
allows context-aware applications to be built without needing
to know how some particular context information is being
sensed.

In the Origins Model, each origin is associated with a type
(e.g. temperature, location, presence) that describes which con-
text information it provides. The type of an origin is associated
with the origin during its creation and remains unchanged
during its lifetime. Furthermore, origins are associated with
meta-information about the context information they provide.
This meta-information allows context-aware applications to
further filter relevant origins from irrelevant ones. Examples of
meta-information are a geographical region with which context
information is associated (e.g. temperature in Vienna), security
and privacy policies (e.g. encryption methods and public keys),
and so forth. The meta-information can be set internally by
the origin or externally by clients and is allowed to change
during the lifetime of the origin. For example, the location
of a mobile sensor is not static and changes as the sensor is
moved. In a pervasive system, origins associated with specific
type and meta-information must be discoverable by context-
aware applications.

Context-information acquired by origins can be used to pro-
duce new types of context information. For example, context
information can be created from another context information
(e.g. conversion of temperature from Celsius to Kelvin), an ag-
gregation of other context information (e.g. summing electrical
consumption of all appliances to provide current overall con-
sumption in a house), or even a deduction from the presence or
absence of some other context information (e.g. using location

of people to provide the occupancy of a room). In the Origins
Model, an origin is allowed to use other origins as context
sources with the intent to produce new context information.
For example, we can have an origin that provides an average
electrical consumption of some particular household appliance
like fridge, air-conditioning, or television in some particular
region. This context information has to be determined from
origins that provide current electrical consumption of such
appliance and are located in specified region. This mechanism
of composing origins in any particular fashion provides a very
powerful method to implement processing schemes for context
information.

In the design of the Origins Model, origins can be physically
separated from their context sources. This separation allows
origins to be migratable and executable on a different machine
than the context source or any context-aware application.
Furthermore, a context source can have multiple origins rep-
resenting it and if these origins share context information
and meta-information between them, then origins are also
replicable. These two properties of origins, allow large-scale
pervasive systems, that implement the Origins Model, to easily
scale and adapt to change in the number of context sources
(migration) and the load that context-aware applications put
on origins (replication).

More formally, origins have to exhibit these properties:

1) Universal: An origin is an abstraction of a single context
source that provides an universal interface for context-
aware applications to access its context information.

2) Discoverable: Origins are discoverable based on the type
of context information they provide and meta-information
associated with them.

3) Composable: Origins can be composed into another ori-
gin that provides a new type of context information,
which is produced from context information of the com-
posed origins.

4) Migratable: Origins can migrate between different ma-
chines to improve flexibility and scalability.

144

5) Replicable: Multiple origins can abstract the same context
source to improve reliability, fault-tolerance, and acces-
sibility.

B. Operations

Context-aware applications use context information to rea-
son about their current environment and provide relevant
services to their users by adapting to changes in the envi-
ronment [18]. When developing a context-aware application,
developers have to answer three questions:

1) Which context information is relevant for the application?
2) How can the application understand the obtained context

information with respect to the environment?
3) How to adapt application’s behavior based on the new

information about the environment?
Thus, the task of pervasive systems is to allow context-
aware applications to access relevant information, to process
the received information, and to react to changes in the
environment.

In the Origins Model, two operations, select and retrieve, are
sufficient to access context information provided by origins.

1) Select operation allows context-aware applications to dis-
cover origins that have specific type and meta-information
(i.e. adhere to specific criteria).

2) Retrieve operation allows context-aware application to
acquire current value of context information from an
origin.

We should note that select and retrieve operations can return
no result because for example the selection criteria was too
strict or there was a problem with retrieving the current
value of context information (e.g. network problem). In small-
scale pervasive systems, it is allowed and even encouraged
to raise an exceptional state when there is a problem with
accessing context information. Such pervasive systems have
limited number of context sources. Misbehavior of a context
source should be immediately noticed and dealt with, because
the loss of even one context source can create a negative
impact on the functionality of the whole system. In large-
scale pervasive systems, we have tens of thousands of context
sources distributed over a large area and connected over an
unreliable network. Problems with accessing context sources
become a common occurrence. Furthermore, such pervasive
systems have much bigger redundancy with respect to context
sources and can easily cope with failure of one by accessing
another source. Thus, the failure to access context information
should not be considered as an exceptional state. Nevertheless,
the failure is noted by returning no result and providing a
possible reason for it.

The two simple operations for accessing context information
are enough to build any type of context-aware application, but
it is helpful to have additional processing operations to ease
the development of more complex applications by allowing
to explicitly specify processing of context information. In the
Origins Model, each processing operation is implemented on
top of the select and retrieve operations. We can distinguish

between four different processing operations (Fig. 2): filter
(1:1), infer (n:1), aggregate (1:n), and compose (n:m). The
number in parentheses represents the ratio between the number
of different types of the context information used as input for
the processing operation and the number of distinct values
of context information generated as output by the processing
operation.

1) Filter: Filtering lets programmers specify further pruning
of unneeded context information based on their current
values. A filter operation defines criteria for inclusion of a
retrieved value of context information into the result. This
is different from the selection operation, which defines
criteria for inclusion of context sources. This operation
can be implemented on top of the retrieve operation.
When the retrieve operation returns a current value of
context information, the filter operation checks the result
against the criteria and if the result passes the criteria, it
is returned. Otherwise, no result is returned.

2) Infer: Inference is a composition of heterogeneous con-
text information into one new context information. A
simple example of inference is an operation that uses air
temperature and relative humidity to determine the heat
index. This operation is implemented by first retrieving
current values of context information from multiple ori-
gins, and then invoking the inference algorithm on the
values and returning its result.

3) Aggregate: Aggregation is defined as a process of com-
bining multiple values of the same context information
into a homogeneous list. This type of information can
be beneficial as a source to analyze deviations between
the values in the list or to infer new information from
the values (e.g. average, sum, minimum, maximum).
Aggregation can be separated into two distinct types:
scope-based and time-based. The scope-based aggrega-
tion collects context information from all available origins
that satisfy some selection criteria (e.g. all temperatures in
Austria per city). It is implemented by invoking the select
operation and returning all current values of context infor-
mation from all origins returned by the select operation.
The time-based aggregation collects context information
from a single origin in some predefined time period
(e.g. temperature every 10 seconds in next 5 minutes).
It is implemented on top of the retrieve operation by
repeatedly invoking it based on the specified rate and
period.

4) Compose: Composition allows context-aware applications
to create a Cartesian product of multiple, heterogeneous
context sources. As this can create an exponential number
of resulting values, it is almost always necessary to
include a filtering step that specifies which products are
considered “valid”. An example of this operation is a
composition of the current temperature and atmospheric
pressure (the product part) when they come from the
same location (the filtering part). This operation is imple-
mented using multiple selection criteria to select origins

145

Or Or

Or Or

Pervasive system

Or

Or
Or

Or
Or Or

Or

Or

1. select

2. retrieve
∑CA

3. aggregate

Or CA
1. retrieve 2. filter

Or Or

Or Or

2. retrieve
∏

1. select

CA
3. compose

Pervasive system

Or

Or
Or

Or
Or Or

Or

Or

1 input type many input types

1
 o

u
tp

u
t

v
a
lu

e
m

a
n
y
 o

u
tp

u
t

v
a
lu

e
s

Filtering Inference

Aggregation Composition

CA
1. retrieve 2. infer

Or

Or

Or

Or

Fig. 2. Processing Operations

and retrieve current values of context information from
all origins in each selected group, and then creating a
Cartesian product of current values between each selected
group of origins.

Also, we should note that processing operations are compos-
able with each other. This allows context-aware applications to
define processing schemes by using either the four elementary
processing operations or a composition thereof.

Lastly, the Origins Model defines one more helpful opera-
tion, monitor, that a context-aware application can use to react
to changes in context environment.

1) Monitor: The monitoring of context information allows
programmers to specify periodic retrieval of context in-
formation and to associate a task that is executed on
each retrieval. Thus, it provides functionality to design
applications that continuously monitor context informa-
tion and asynchronously invoke its business logic as the
environment changes.

IV. THE ORIGINS TOOLKIT

The Origins Toolkit is our implementation of the Origins
Model. It is implemented in the Scala programming lan-
guage using the Akka toolkit. Scala is a general-purpose
programming language, which integrates features of object-
oriented and functional programming paradigms. It runs on
Java Virtual Machine and is byte-code compatible with Java
applications. We choose to implement the Origins Toolkit in
Scala because of its flexibility to easily create domain-specific
languages and package them as libraries. The Akka toolkit is
an implementation of the Actor Model. It provides a platform
to build concurrent, scalable, and fault-tolerant applications.

The Actor Model provides the abstraction for transparent
distribution of concurrent computations [5]. In the Actor
Model, an actor is a universal primitive to represent con-
currency [3]. It reacts to messages that it receives from the

outside by sending other messages, creating new actors, and
changing its behavior. The Origins Toolkit uses actors as
foundation to implement the origins. Thus, the only way
to communicate with an origin is by sending it messages
and receiving replies from it. This decouples context-aware
applications from the actual instances of origins and, together
with the location transparency provided by the Akka toolkit,
allows the implementation, deployment, and use of origins in
a distributed, scalable, and fault-tolerant fashion.

In the Origins Toolkit, the retrieval of context information
from origins is based on the concept of futures. A future
represents “a promise to deliver the value” [6]. This mech-
anism allows context-aware applications to decide if they
are going to wait until the result of the future is known
(synchronous), or to continue with execution of some other
task and use the result when it is available (asynchronous).
Moreover, an interesting aspect of futures is that it enables
the promise pipelining, which is used by the Origins Toolkit to
implement the processing of context information with minimal
latency. It allows defining a processing operation on top of a
future instead of an actual value. For example, the conversion
of temperature from Celsius to Kelvin is implemented by
combining the future that will return a temperature in Celsius
and the conversion function from Celsius to Kelvin into a new
future. This future will be completed (i.e. have a value) when
the temperature in Celsius from the first future is available.
Thus, the concept of processing in the Origins Toolkit can
be described as a method to combine futures and processing
functions into new futures, which can then be further processed
or used directly by context-aware applications.

The Origins Toolkit (Fig. 3) is conceptually separated into
three components: System, Client, and Origin. System is
responsible for creation and maintenance of origins. Client is
associated with a System. It is used by a context-aware appli-
cation to select origins created within the System and define

146

Client

access[T](query: Query): Array[T]
select[T](query: Query): Array[Origin[T]]
aggregate[T](type: String): Origin[Array[T]]
entity: Origin[Array[Entity]]

retrieve(): Future[T]

type: String
meta: MetaInfo

<<abstract>>

Origin

T

get(): T
onComplete(f: T => Unit)
map[V](f: T => V): Future[V]
filter(p: T => Boolean): Future[T]

Future
T

Composite

0..*

1

0..*

1

1..*

0..*

0..*

1

Query

selects(meta: MetaInfo): Boolean

Entity

apply[T](field: String): T

Local

address: URL

<<abstract>>

System

create[T](): Origin[T]

Remote

connect()
disconnect()

Fig. 3. The Origins Toolkit components

processing operations. Finally, Origin provides access to its
type of context information and meta-information, and allows
context-aware applications to retrieve context information.

A. System

The Origins Toolkit defines three different implementations
of System: Local, Remote, and Composite.

An instance of the Local system creates origins locally.
Thus, origins created in an instance of the Local system are
executing in the same Java Virtual Machine as the instance of
the Local system. Furthermore, the Local system exposes
a remotely-accessible interface using the Akka toolkit to
create and manage origins. Listing 14 shows an example of
instantiating the Local system and creating a temperature
Origin.

val system = new System.Local {
origins.create("temperature") {

// code to access temperature sensor
}

}

Listing 1. A Local System with a temperature origin

An instance of the Remote system uses the remote interface
provided by an instance of the Local system. Origins created
with an instance of the Remote system are serialized as byte-
code and transferred over the network to the instance of
the Local system. This same mechanism allows the Origins
Toolkit to migrate origins between the systems. Listing 2
shows an example of instantiating and connecting an instance
of the Remote system.

val system = new System.Remote(url, 1234)
system.connect()

Listing 2. A Remote System

4All listings are expressed in the Scala programming language.

An instance of the Composite system composes a set of
systems into one larger system. When a Composite system
is used to create an Origin, it creates the Origin on each
of the underlying systems and then instantiates a local proxy
Origin that uses these underlying Origins to access context-
information in a round-robin fashion. This mechanism allows
origins to be replicated across many instances of System.
Furthermore, the Composite system also exposes a remote
interface, which allows it to be accessed by a Remote system
or be part of other Composite systems. Listing 3 shows an
example of instantiating a Composite system.

val r1 = new System.Remote(url1, 1234)
val r2 = new System.Remote(url2, 2345)
val system = new System.Composite(r1, r2)

Listing 3. A Composite System

B. Client

An instance of Client is created using an instance of
System. It provides the select method to select origins
created with the System and the access method that syn-
chronously selects origins and retrieves their context informa-
tion. Listing 4 shows an example of creating an instance of
Client and accessing the temperature context information.

val remote = new System.Remote(url, 1234)
val client = new remote.Client
val temperatures: Array[Double] =
client.access("temperature")

Listing 4. Access of temperature context information

Both the select and the access methods require an
instance of Query as argument, which allows context-aware
applications to specify the required type of context information
and the meta-information that has to be associated with an
origin. Most commonly, an instance of Query is created from

147

a list of key-value pairs, which represent a selection criteria
based on origin’s meta-information. Listing 5 shows selecting
all temperature origins located in Vienna using a Client and
retrieving future values from the selected origins.

val origins: Array[Origin[Double]] =
client.select(

"type" -> "temperature",
"location" -> "Vienna"

)
// the Futures.sequence method returns
// Future[Array[T]] from Array[Future[T]]
val temperatures: Future[Array[Double]] =
Futures.sequence(

for (origin <- origins)
yield origin.retrieve()

)

Listing 5. Selection and retrieval of context information

A future value returned by the retrieve method can be
synchronously accessed using the get method or a task can
be defined using the onComplete method, which will be
executed asynchronously when the value is available. Both
mechanisms are demonstrated in Listing 6.

// synchronous
val values: Array[Double] = temperatures.get()
// asynchronous
temperatures.onComplete {
temperatures => // do something

}

Listing 6. Accessing future value of context information

Using Client and Future allows context-aware appli-
cations to define processing operations. Filtering of context
information uses the filter method in Future to define a
predicate function for filtering. Listing 7 shows how to filter
non-positive temperature.

val positiveTemperature: Future[Double] =
origin.retrieve().filter {

temperature => temperature > 0
}

Listing 7. A Filtering of context information

The inference of context information is implemented using
the map method in Future to transform retrieved values of
context information into a different type. Listing 8 shows
how we can find a minimum temperature from an array of
temperatures.

val minimum: Future[Double] =
temperatures map {values => values.min}

Listing 8. Inference of context information

Listing 9 shows how we can define a scope-based and a
time-based aggregation. It uses the aggregate method to cre-
ate a new proxy Origin which does the respective aggregation
of context information when its retrieve method is invoked.

// the scope-based aggregation
val origin: Origin[Array[Double]] =
client.aggregate("temperature")

val temperatures: Future[Array[Double]] =
origin.retrieve()

// the time-based aggregation
val origin: Origin[Array[Double]] =
client.aggregate(

"temperature",
for = 5.minutes,
every = 10.seconds

)
val temperatures: Future[Array[Double]] =
origin.retrieve()

Listing 9. Aggregation of context information

Finally, Client provides the entity method for compo-
sition of context information. The entity method creates a
new proxy Origin, which does a Cartesian Product of the
specified types of context information. When the Origin’s
retrieve method is invoked, it returns an array of Entities
where each Entity represents a single Cartesian product.
Listing 10 shows how we can get the first Cartesian product
of temperature and humidity in Vienna.

val origin: Origin[Array[Entity]] =
client.entity.

field[Double]("temperature" where
{"location" -> "Vienna"}).

field[Int]("humidity" where
{"location" -> "Vienna"})

val entities: Future[Array[Entity]] =
origin.retrieve()

// get first entity
val first: Entity = entities.get()(0)
val temperature: Double = first("temperature")
val humidity: Int = first("humidity")

Listing 10. Composition of context information

V. CONCLUSION

This paper introduced the Origins Model and the Origins
Toolkit. The Origins Model provides a programming model for
the development of context-aware applications on large-scale
pervasive systems. The abstraction provided by the Origins
model is based on universal, discoverable, composable, migrat-
able, and replicable origins that are associated with type and
meta-information. These properties allow origins to adequately
represent many different types of context sources. Based on
origins, we defined four elementary processing operations:
filter, infer, aggregate, and compose. These operations provide

148

sufficient foundation to create processing schemes in context-
aware applications. Based on the Origins Model, we developed
the Origins Toolkit, which is our proof-of-concept implemen-
tation that utilizes concepts of actors, futures, and promise
pipelining to provide a distributed, scalable, and fault-tolerant
solution.

The Origins Toolkit provides the necessary support to scale
a large-scale pervasive system with increasing number of
context sources and context-aware applications using migra-
tion and replication of origins. For future work, we plan to
extend the Origins Toolkit to support intelligent and elastic
scaling of large-scale pervasive systems using ideas from
cloud computing research. Furthermore, we plan to integrate
the concept of data quality from the research into database
systems into the Origins Model and Toolkit. This concept
will allow a large-scale pervasive system to process and
disseminate context information in a much more consistent
way and provide higher-quality context data to context-aware
applications.

ACKNOWLEDGMENT

This work is supported by Pacific Controls Cloud Com-
puting Lab5 (PCCCL)— a joint lab between Pacific Controls
LLC, Sheikh Zayed Road, Dubai, United Arab Emirates and
the Distributed Systems Group of the Vienna University of
Technology.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 3, no. 3, pp. 3–11, February 1991.

[2] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Personal Communications, vol. 8, no. 4, pp. 10–17, 2001.

[3] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR for-
malism for artificial intelligence,” in Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. San Francisco, California,
USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.

[4] C. Hewitt and J. Henry C. Baker, “Laws for communicating parallel
processes,” in Proceedings of the 1977 IFIP Congress, August 1977,
pp. 987–992.

[5] G. A. Agha, “ACTORS: A model of concurrent computation in dis-
tributed systems,” MIT Artificial Intelligence Laboratory, Cambridge,
Massachusetts, USA, Tech. Rep. AITR-844, June 1985.

[6] J. Henry C. Baker and C. Hewitt, “The incremental garbage collection
of processes,” in Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages. New York, New York, USA:
ACM Press, 1977, pp. 55–59.

[7] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems,” in Proceedings of
the ACM SIGPLAN 1988 conference on Programming Language Design
and Implementation. New York, New York, USA: ACM Press, 1988,
pp. 260–267.

[8] A. Schmidt and K. van Laerhoven, “How to build smart appliances?”
IEEE Personal Communications — Special Issue on Pervasive Comput-
ing, vol. 8, no. 4, pp. 66–71, 2001.

[9] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aiding
the development of context-enabled applications,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems: The CHI
is the Limit. New York, New York, USA: ACM Press, 1999, pp. 434–
441.

[10] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,” Human-Computer Interaction, vol. 16, no. 2, pp. 97–166,
December 2001.

5http://pcccl.infosys.tuwien.ac.at/
[11] K. Henricksen and J. Indulska, “Developing context-aware pervasive

computing applications: Models and approach,” Pervasive and Mobile
Computing, vol. 2, no. 1, pp. 37–64, February 2006.

[12] J. E. Bardram, “The java context awareness framework (JCAF) — a
service infrastructure and programming framework for context-aware
applications,” in Proceedings of the 3rd International Conference on
Pervasive Computing. Munich, Germany: Springer Verlag, 2005, pp.
98–115.

[13] H. Chen, T. Finin, and A. Joshi, “Semantic web in the context broker ar-
chitecture,” in Proceedings of the 2nd IEEE International Conference on
Pervasive Computing and Communications (PerCom’04). Washington,
DC, USA: IEEE Computer Society, March 2004, pp. 277–286.

[14] M. J. van Sinderen, A. T. van Halteren, M. Wegdam, H. B. Meeuwissen,
and E. H. Eertink, “Supporting context-aware mobile applications: An
infrastructure approach,” IEEE Communications Magazine, vol. 44,
no. 9, pp. 96–104, September 2006.

[15] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tönjes, “A context pro-
visioning framework to support pervasive and ubiquitous applications,”
in Proceedings of the 4th European Conference on Smart Sensing and
Context. Berlin, Hidelberg, Germany: Springer Verlag, 2009, pp. 93–
106.

[16] F. Li, S. Sehic, and S. Dustdar, “COPAL: An adaptive approach to con-
text provisioning,” in Proceedings of the 6th International Conference
on Wireless and Mobile Computing, Networking and Communications.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 286–293.

[17] S. Sehic, F. Li, and S. Dustdar, “COPAL-ML: A macro language
for rapid development of context-aware applications in wireless sensor
networks,” in Proceedings of the 2nd Workshop on Software Engineering
for Sensor Network Applications. New York, New York, USA: ACM
Press, 2011, pp. 1–6.

[18] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing. London, United Kingdom:
Springer Verlag, 1999, pp. 304–307.

149

