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Abstract—Since the emergence of cloud computing service level objectives (SLOs) and

service level agreements (SLAs) have put themselves forward as one of the key enablers

for cloud’s on-demand, pay-as-you-go service consumption model. To date, the vast

majority of cloud platforms provide support for SLAs only in terms of statically predefined

SLOs, e.g., service availability, and low-level resource capacity guarantees, e.g., CPU

usage. Unfortunately, there is only limited support to clearly mapworkload performance

requirements to the resource capacity guarantees. In this article, we introduce SLOC— a

novel elasticity framework, which promotes a novel performance-driven, SLO-native

approach to cloud computing. We outline themain research challenges, vision, and

approach of our SLOC framework toward the SLO-native paradigm in next generation

cloud computing.
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& CLOUD’S SERVICE CONSUMPTION model inher-

ently requires a formal agreement between a

customer (service consumer) and a cloud ser-

vice provider. This is usually described as ser-

vice level agreement (SLA).2,17 Key components

of any SLA are service level objectives (SLOs).

They define specific and measurable capacity

guarantees to a customer, e.g., available mem-

ory to a provisioned VM. However, customers

are usually more interested in performance

guarantees, whose impact can be reflected in

business key performance indicators (KPIs).

Unfortunately, currently there is only limited

support to clearly map the resource capacity

requirements to the guarantees about workload

performance. Defining application SLOs is

largely performed on an ad hoc basis, with lim-

ited support from cloud providers. This poses a

significant challenge to customers as it is usu-

ally very difficult to correctly derive low-level

resource capacity requirements, such as mem-

ory allocation, from a workload’s business

requirements.

Elasticity, one of the fundamental properties

of cloud computing, allows for applications to

respond to varying load patterns by adjusting

the amount of provisioned resources to exactly

match their current need, thus minimizing

over-provisioning and reducing hosting costs.

Although, elasticity offers theoretically ideal

strategies to keep track of and enforce an

application’s resource-bound SLOs, in practice it

is increasingly complex to define correct elastic

strategies in the face of ever-changing cloud serv-

ices, novel and heterogeneous resource types

(e.g., containers), execution paradigms (e.g.,

serverless computing), and deployments topolo-

gies (e.g., microservice meshes). In addition to

resource elasticity, the cloud computing para-

digm enables additional elasticity dimensions,

such as cost elasticity and quality elasticity.7

However, current approaches dealing with SLOs

largely fail to consider elasticity dimensions

holistically. This introduces another level of indi-

rection for the users, who now need to consider

not only implications of low-level resources on,

for example, costs, but also implications of costs

on business KPIs.

SLOs also play a crucial role for cloud ser-

vice providers, as their main business model

depends on achieving the best utilization of their

resource pools, while maintaining a minimal

level of SLA violations. Although, cloud service

providers employ numerous techniques to opti-

mize resource utilization in their data centers,

such as resource overcommitment and oversub-

scription models,12 resource bursting,22 and

resources reclamations,8 the average utilization

of data centers’ resource pools is still reported

to be as low as 20%–30%. This has a negative

impact on both the cloud service providers and

the customers, because customers are usually

over provisioning for their workloads, hence

incurring higher operational costs, while cloud

service providers are left with de facto unused

resources, hence are not able to fully exploit

their economies of scale.

In this article, we introduce SLOC—a novel

elasticity framework that promotes SLOs as a

first-class cloud citizen. SLOC aims to raise the

level of abstraction and provide suitable mod-

els, algorithms, runtime mechanisms, and tools

for providing and consuming cloud resources

in an SLO-native manner, while at the same

time offering performance guarantees to the

users. Concretely, SLOC framework intends to

relieve users from explicitly dealing with

low-level concepts such as CPU and memory,

by enabling performance-driven, SLO-native

approach to cloud computing. At the same

time, framework aims to enable cloud providers

to have more versatile understanding, greater

control, and better utilization of their resource

pools by, among other things, accounting for

additional elasticity dimensions such as cost

and quality.

The remainder of this article is structured as

follows. In the “Research Challenges” section, we

analyze key research challenges, which motivate

our SLOC framework. In the “Background” sec-

tion, we provide an overview of our previous

work in the field of elastic computing, SLAs, and

cloud engineering. The “SLOC Approach Over-

view” section presents the main vision and intro-

duces the general approach of SLOC framework.

In the “Design Considerations for SLO-Driven

Elasticity Mechanisms” section, we discuss main

techniques, mechanisms, and the road map

for our SLOC framework. Related research is

discussed in the “Related Work” section. Finally,

Internet of Things, People, and Processes

40 IEEE Internet Computing

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on July 29,2020 at 12:50:29 UTC from IEEE Xplore.  Restrictions apply. 



we conclude this article in the “Conclusion” sec-

tion and provide an outlook for ongoing and

future work.

RESEARCH CHALLENGES
RC-1: Specifying multidimensional elasticity

SLOs: The vast majority of cloud platforms allow

for specifying resource guarantees, but very few

offer any support for additional elasticity dimen-

sions, such as cost or quality. This significantly

limits the end user (consumer), who might care

more to optimize for the costs of executing a

specific workload. Unfortunately, apart from

some niche solutions (e.g., AWS Spot Instances)

there is very limited support for multidimen-

sional elasticity concerns and optimization.

RC-2: Mapping performance SLOs to resource

allocation: Currently, most cloud platforms pro-

vide rudimentary support for specifying QoS and

SLOs to end users. The support is mainly limited

to statically predefined SLAs (e.g., service avail-

ability) and low-level resource capacity gua-

rantees (e.g., requests/limits in Kubernetes or

templates/types in AWS). Unfortunately, correctly

mapping the desired workload’s performance

models to resource capacities, as well as correlat-

ing the two metric sets and deriving their implica-

tions, is a very challenging task in practice. More

concretely, in our case, this entails automatically

identifying the underlying cloud resources to be

allocated/adjusted in accordancewith the interde-

pendent three-dimensional elasticitymodel.

RC-3: Supporting full-stack observability for SLO

tracking: Observability is a foundational element

for building and running modern cloud-native

and microservice applications. However, cur-

rently, there is only limited support for manag-

ing QoS and SLO performance models at the

level of logical deployment units and topologies.

Additionally, support for aggregating low-level

resource capacity requirements and metrics

across the full-stack is still largely missing. This

is crucial for deriving macro-level metrics such

as average CPU consumption of a replica set

level. Therefore, there are a number of chal-

lenges that development and operations teams

face when dealing with observability.

RC-4: Enabling consistent and congruent scaling

strategies: While there are numerous tools

supporting infrastructure provisioning and con-

figuration management, support for run time

elastic controlling remains fairly limited. It is pri-

marily based on a notion of autoscaling groups/

sets of resources where a user specifies their

cardinality. Most of the solutions only allow for

service- or instance-level scaling policies as

opposed to full-stack scaling strategies. On the

one hand, this makes dealing with elasticity con-

cerns cumbersome. On the other hand, synchro-

nizing scaling actions across multiple services

and defining consistent and congruent scaling

strategies become very difficult. Finally, optimiz-

ing scaling actions for specific elasticity and SLO

dimensions, such as cost, have only a rudimen-

tary support. Therefore, creating suitable elastic

scaling strategies to date remains a challenging

task.

BACKGROUND
This article builds on our previous research in

the fields of elastic computing, SLAs, and cloud

engineering. In continuation, we outline the most

important aspects of our previous work under-

pinning our SLOC framework.

Elastic Computing—The Next Level

Each elasticity dimension has different indica-

tors ormetrics that contribute to it. Theminimum

and maximum allowed values of a set of metrics

define an elasticity boundary. The lower boundary

indicates, in most cases, the minimum resources

and quality characteristics required by an appli-

cation/component to fulfill its purpose, while the

upper boundary usually describes the maximum

that the developer can afford to pay. In some

cases, e.g., the response time, the upper bound-

ary refers to theminimum requirement. When the

metrics of all dimensions are combined, they

form an application’s elasticity space. This is

essentially the current state of the application

with respect to its elasticity metrics (e.g., current

response time, cost per hour, etc.). It can be

tracked over time to understand the behavior of

the application and the relationships between

various metrics.4,7,20,19 MELA20 is a tool for

advancedmonitoring of cloud systems. It collects

metrics from various levels of a cloud system

(single services, VMs, etc.) and aggregates and
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combines them, according to the developer’s con-

figuration, to derive higher level metrics. Rather

than focusing on a single component of a cloud

application, it thus delivers insights into the cur-

rent elasticity space of the entire application. By

analyzing subsets of the metrics over time, it fur-

thermore determines elasticity pathways, which

shows the relationships among a set of metrics

over time.

SYBL4 is a language for specifying elasticity

monitoring, constraints, and strategies at differ-

ent levels of cloud applications. Specifically,

these levels are the entire application, applica-

tion components, and code within the compo-

nents. Based on these specifics, the runtime

environment can apply complex elasticity con-

trol actions on the application.

Cloud Platforms

Resource scheduling is one of the fundamental

properties in the current cloud platforms. In this

article, we leverage our previous work, Arktos,9 as

the cloud platform to build and experiment multi-

dimensional elastic computing, i.e., extending

resource elasticity to include quality and cost

elasticity dimensions. Arktos is designed as a mul-

titenant and large scale cloud platform evolved

from Kubernetes1 to schedule, provision, and

manage resources for VM, container, and server-

less functions.

Specifically, the vision of Arktos is to 1) man-

age a very large compute cluster, in the order of

100K compute nodes, this allows us to have the

scale to experiment various scheduling algo-

rithms for increasing resource utilization for

cloud providers; 2) unify the technology stack to

manage various resource types such as bare

metal servers, virtual machines, and lightweight

containers, which allows the platform to manage

resources more efficiently at different granular-

ity level, thus achieving the true elasticity of the

platform; 3) provide true multitenant computing

environment with strong isolation so that

resources can be shared without impacting

other tenants. This further improves resource

utilization by using techniques such as resource

reclamation among tenants.

Another of our projects, which underpins

this article, is Mizar10 cloud network. Arktos

uses Mizar as its underlying network control and

data plane to provision and manages the virtual

network and network endpoints for VMs and

containers provisioned by Arktos. Mizar pro-

vides support of large scale network endpoint

provisioning, fast endpoint-to-endpoint network

routing among VMs, and containers.

SLOC APPROACH OVERVIEW

Main Objectives

To address the aforementioned challenges

and achieve our vision of an SLO-native para-

digm for the next generation cloud platforms,

our SLOC framework sets the following main

objectives.

� We intend to exploit and advance current

support for managing elasticity concerns in

order to achieve better support for SLOs. To

this end, we intend to build on our previous

work on elasticity space and boundaries and

to facilitate defining and enforcing soft and

hard SLO constraints in terms of elasticity

mechanisms.
� We aim to enable the users to define their SLO

requirements in a flexible and use-case-specific

manner. Opposed to current SLA support,

which only accounts for general, predefined

requirements such as availability or durabil-

ity, our objective is to go a step further and

facilitate optimizing on a use case basis. For

example, for some nonmission-critical jobs

and services, the infrastructure costsmight be

themain factor driving the decisions.

� To be able to define and specify cloud-native

SLAs in terms of business-relevant, perfor-

mance-based SLOs, we intend to develop a

novel SLO elasticity policy language. The lan-

guage aims to allow users to perform a clear

mapping of low-level resource quotas to a

workload’s performance models and to enable

defining complex scaling strategies.

� In order to enable the shift from low-level,

resource-centered SLOs and elastic require-

ment specifics towards intent-focused, multidi-

mensional elasticity models, our framework

will provide novel coordination, control, and

orchestration approaches that enable cloud

platforms to adapt dynamically to varying

load patterns in a dependable manner.
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In the remainder of this section, we describe

the main concepts and design of the SLOC frame-

work, which enables us to achieve the aforemen-

tioned objectives. In the “Design Considerations

for SLO-Driven Elasticity Mechanisms” section,

we discuss the main SLO-driven elasticity

mechanisms and techniques w.r.t. our general

objectives.

Main Concepts and Architecture Overview

The core idea behind SLOC framework is to

enable SLO-native management of elastic Cloud

resources. In a nutshell, our SLO-native approach

introduces a paradigm shift from general, busi-

ness logic agnostic, low-level SLAs to intent-

based, SLO-first, performance-driven, and orches-

tration-aware elasticity models.

1. Intent-based means that we are declaring

what the execution environment of a work-

load should look like, i.e., the infrastructure/

resource desired state for the given point in

time considering the elasticity requirements,

constraints, and SLAs.

2. SLO-first means that all the SLOs and QoS

along multiple elasticity dimensions are

inherently aligned with application model

and business requirements/KPIs as opposed

to external, predefined, business logic agno-

stic configuration

3. Performance driven denotes that the SLOs’

boundaries are specific in terms of high-level

models, which represent workload’s desired

performance requirements. In turn, such per-

formance models are described in form of

SLO or QoS metrics such as latency, timeout

rate queue size, etc., as opposed to physical

resource consumption metrics such as CPU

and memory.

4. Orchestration-aware implies that the appli-

cation deployment bundles such as micro-

services or service meshes are aware of

automated deployment, scaling, scheduling,

and management.

Subsequently, we outline the architecture of

our SLOC framework and give an overview of its

main components. Figure 1 (left) shows a high-

level view of the framework architecture together

with main control processes (top-down) and

monitoring data delivery and analytics process

(bottom-up). On a high-level, we identify the

following threemain layers of SLOC framework.

i) User-facing layer.

ii) SLOC runtimes layer.

iii) Deep Cloud facing layer.

The user-facing layer exposes main abstrac-

tions, mechanisms, and runtime services of

the SLOC framework to the end users, enabling

them to define SLO elastic policies, visualize

their infrastructure and its current status, as

determined by SLOC’s observability mecha-

nisms. We discuss SLOC’s SLO Elastic Policy Lan-

guage in detail in the “Design Considerations for

SLO-Driven Elasticity Mechanisms” section.

The SLOC runtimes layer is the “brains” of

our framework. Generally, it is responsible for

implementing main models, algorithms, and

mechanisms, which are required to interpret

Figure 1. Overview of SLOC’s architecture and distributed elastic resource orchestration.
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user-defined SLOs, translates such SLOs and QoS

requirements in cloud-specific resource provision-

ing models and enforce such SLOs during runtime.

The most important components at this layer

include: i) Elastic resource orchestration. ii)

Observability facilities. iii) Control facilities. iv)

Governance, compliance, and security concerns.

The elastic resource orchestration is responsible

for interpreting and enforcing user-defined SLOs,

elasticity requirements, and configurationmodels.

Figure 1 (right) illustrates the main facilities and

services of SLOC’s distributed elastic resource

orchestration layer. This layer acts as a “gluing”

component bringing together SLO definitions,

multidimensional elasticity models, and frame-

work’s runtime mechanisms. For example, elastic

resource orchestration receives policy configura-

tion directives, in terms of high-level objectives

such as to optimize infrastructure for latency. It

interprets these objectives and orchestrates the

underlying resources accordingly, by invoking the

underlying runtime mechanisms as well as dele-

gating specific decisions and/or responsibilities

to cluster management system controllers. The

details of observability and control facilities are

discussed in the “Design Considerations for

SLO-Driven Elasticity Mechanisms” section.

SLOC’s third core layer is the Deep Cloud fac-

ing layer. This layer is responsible for abstract-

ing the underlying infrastructure resources and

to mediate interaction with the cluster manage-

ment system, cloud platform, and virtualization

providers. Generally, its main purpose is to cap-

ture infrastructure-specific functionality and

models, hence enabling development of generic

SLOC runtime mechanisms, which are indepen-

dent from platform implementation or vendors.

The Deep Cloud facing layer will be implemented

as a set of plugins, enabling SLOC framework to

be easily extended as well as configured and

optimized for infrastructure-specific capabilities.

This is in line with SLOC’s design philosophy not

to “reinvent the wheel,” but rather to align itself

with de facto standards, such as Kubernetes,

and reuse available elasticity mechanisms (e.g.,

for container/VM scheduling, placement mecha-

nisms, etc.). Additionally, this approach enables

the users to implement custom or even hard-

ware-specific connectors to support, for exam-

ple, different types of GPUs in the cluster.

DESIGN CONSIDERATIONS FOR
SLO-DRIVEN ELASTICITY
MECHANISMS

SLO Elasticity Policy Language

In order to define SLOs in a user-friendly man-

ner, an appropriate language is required. To this

end, we intend to extend the previously men-

tioned SYBL language. In its current state, SYBL

already allows specifying constraints for all

three elasticity dimensions (resources, cost, and

quality).

The new SLO elasticity policy language will

allow developers to define SLOs by referring to

their workloads and their components as enti-

ties, for which they can define constraints on

certain characteristics, e.g., the response time. It

will be possible for developers to define their

own entities by combining existing ones. For

example, the nodes of an Apache Cassandra DB

and those of an Apache Hadoop cluster could be

combined in a QueryService entity, for which

the developer may want to define requirements.

Listing 1 shows what a simple specification in

this language could look like.

Listing 1: SLO Elasticity Policy Language

# SLOs that apply to the entire application

# consisting of multiple containers and/or VMs.

SLO1: App.quality.responseTime < 200 ms

SLO2: App.cost.totalCost < 800 Euro

# Define a component by combining Cassandra

and Hadoop nodes.

Comp: QueryService ¼ [Deployments.Cassandra-

ClusterA, Deployments.HadoopClusterB]

# This SLO applies only to the QueryService

component.

SLO3: QueryService.cost.costEffectiveness ¼ 350

# SLO2 is a soft SLO.

Soft: SLO2

Defining a response time and maximal total

costs, e.g., SLO1 and SLO2 should be enough, i.e.,

developers should not have to worry about CPU

or memory. The set of confinable characteristics

provided by the language needs to be carefully

devised, taking the entire SLOC framework into

account. High-level specifications must be possi-

ble, but it must also be possible to map these to

resources and actions for orchestration. A
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characteristic can thus be included in the lan-

guage if it is i) relevant for expressing a require-

ment posed by developers and ii) can be mapped

(by itself or in conjunction with other characteris-

tics) to low-level resource requirements or correc-

tive actions if it is not fulfilled in a state of the

running system. For example, SLO3 defines a cost

effectiveness for the QueryService. The effective-

ness could be influenced by characteristics, such

as accuracy of the output and response time,

while the cost relates to the total cost of the

resources (CPU cores, memory, etc.) required by

this component. The addition of custom charac-

teristics will also be supported. If an application

requires combining, e.g., CPU utilization, memory

usage, and disk I/O operations, in a use case spe-

cific high-level characteristic, developers can

write an extension library for this and expose it in

the elasticity policy language.

Finally, for application-level cases, we can

introduce a notion of soft SLO constraints, which

are an extension of the traditional SLOs and our

elasticity boundaries and elasticity pathway-

models. These soft constraints can serve as

“guidelines” to the SLOC framework on how to

optimize the underlying infrastructure and navi-

gate the application through its elasticity bound-

aries during runtime. For example, a total cost of

less than 800 Euros is desirable (SLO2 is a soft

SLO), but it is not a strict limit. On the other hand,

the maximum response time of 200 ms needs to

hold all the time, e.g., because the workload is

part of a real-time service, thus making this a hard

SLO. Thus, the “softness” of soft SLOs needs to be

precisely define when designing the elasticity pol-

icy language and its runtime and possibly even be

configurable by the developers.

SLOC Observability

Observability is essential to present a detailed

description of the workload’s behavior, providing

rich contextual information. The classic observ-

ability concept is based on three ground data

sources, namely metrics-based monitoring, that

alert when something happened, log, that collect

the event history, and traces that point to where

the event locates. Observability aims at looking at

what caused a specific behavior, combining all

the data collected above, thus extracting relevant

and appropriate information.

SLOC aims at expanding the compass, support-

ing detailed insights into and visualization of the

workload’s behavior during runtime. We intend to

connect distributed traces, logs, and monitoring

metrics through independent and intelligent anal-

ysis of the elastic cloud. Predictions are the result

of the use of machine learning and statistical

approaches, thus moving toward an automated

and autonomic approach from a heavily human-

centered analysis. The constant monitoring of the

applications will allow precise and insightful mod-

els that can be used to predict changes in perfor-

mance and proactively act on that, as well as

providing a better comprehension of the correla-

tion among individualmetrics.

Furthermore, as previously discussed, SLOC

aims to enable users to specify high-level perfor-

mance-oriented QoS/SLOs for their workloads,

which in turn get mapped to low-level resource

metrics. Figure 2 depicts a partial view of SLOC’s

metrics taxonomy that facilitates this mapping.

From collecting the resource utilization measure-

ments, it is possible to group the extracted met-

rics, classifying them according to their function.

For example, in Figure 2, we specify four low-level

metrics classes: computation, memory, network,

and storage. The high-level metrics such as Cost-

Effectiveness can be mapped to such “physical

metrics” by our framework automatically. Addi-

tionally, SLOC will provide mechanisms and tech-

niques, enabling the users to also provide their

custom metrics and the desired mappings in

order to be able to account for application-spe-

cific behavior and concerns.

In this way, it is possible to guarantee at run-

time the verification ofmultidimensional elasticity

and SLOs models, through ensuring constraints

abidance and alarming. The insights are more

personalized, uncovering hidden patterns, and

allowing more proactive and automated system

management.

SLOC Elasticity Control

The elasticity controlling mechanisms and

technique encapsulate actuation functionality of

SLOC’s distributed elastic resource orchestration.

Figure 1 (right) illustrates a number of runtime

facilities and services. Scheduling, placement,

bursting, and reclamation are all examples of dif-

ferent elastic controls. As many of the needed
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runtime services are readily implemented by clus-

ter management system controllers, SLOC takes a

pragmatic approach and delegates specific tasks

to these controllers whenever possible. However,

SLOC adds fundamental improvements to manag-

ing elasticity concerns in an SLO-nativemanner.

SLOC aims to support a set of generic, atomic

scaling actions, and an extensible plugins archi-

tecture. To this end, we plan to examine and sup-

port most promising, de facto standard resource

management and scaling actions. These actions

are referred to as atomic scaling actions and

include the following.

i) Increase/decrease resource allocations to

workload/job replica (vertical scaling).

ii) Add/remove workload replica to different

node, e.g., spin up a new container (horizon-

tal scaling).

iii) Migrate a workload replica (live migration).

SLOC intends to enable applying these

actions uniformly regardless of the underly-

ing resource type (e.g., container or VM) and

to build on these actions combining them

into complex scaling strategies, which oper-

ate on the level deployment units. Finally, as

the amount of potential scaling strategies is

unlimited, we will not attempt to support

every possible strategy, but rather enable

easy configuration and plug-in mechanisms

for SLOC framework.

SLOC intends to enable defining consistent and

congruent scaling strategies. In a nutshell, this

requires aligning and synchronizing scaling

actions across multiple services comprising a

deployment unit. A deployment unit is any set of

microservices that are deployed and managed

together. A set of replicated API services together

with their load balancer is a basic example of a

deployment unit. Therefore, scaling such deploy-

ment unit goes beyond traditional atomic scaling

actions and also requires considering and dynami-

cally changing its deployment topology. This

approach enables dealing with elasticity on a

higher levels of abstraction, but also exposes addi-

tional information pertinent to optimal resource

management. In the above example, we can con-

sider load balancer’s queue size to optimally

apply scaling actions. Additionally, it allows for

optimizing scaling strategies for various elasticity

and SLO dimensions, such as cost.

In addition to predictive monitoring, SLOC

aims to provide support for predictive scaling.

In a nutshell, SLOC will try to continuously per-

form sequences of prophylactic scaling actions

(preventing potential SLO violations), instead of

solely focusing to exactly predict the workload’s

future behavior. The main rationale behind this

approach is utilizing discrete and deterministic

nature of the scaling actions. To this end, we aim

to develop several scaling strategy blueprints,

which will encapsulate common scaling pat-

terns. SLOC’s resource orchestrator will then

continuously assess the outcomes of applying

the scaling blueprints (dry run) and act by apply-

ing them when conditions are met.

Implementation Considerations

The SLOC framework aims to build on and

extend our previous work: Arktos, MELA, and

Figure 2. Example of metric taxonomy from low-level resource metrics to performance QoS/SLO metrics.
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SYBL. These three systems complement each

other and will work together to support imple-

menting the SLOC architecture as described in

the “SLOC Approach Overview” section.

Figure 3 illustrates the general workflow of

how we envision to combine these systems and

extend them in order to implement SLOC’s end-

to-end SLO and elasticity specific monitoring

and enforcement.

1. A user submits a workload to Arktos. As a

part of the workload definition, an SLOC pol-

icy object described by SLOC’s policy lan-

guage, which is based on SYBL, is included.

2. An SLOC language processor will do syntax

and semantics check on the submitted SLOC

policy, and generates preliminary resource

allocation guidelines for Arktos controllers

such as scheduler to optimize initial workload

placement.

3. The workload is scheduled to a worker host.

4. The Arktos agent on the worker host picks up

the workload and launches it.

5. An observability agent, based on MELA and

Prometheus is deployed on each Arktos

slave node. It monitors the workload execu-

tion and provides full-stack monitoring and

observability capabilities.

6. An SLOC agent is deployed on each slave

node. It detects and predicts any potential

SLO violation, and performs enforcement

actions that are local to a node. Such actions

include increasing or decreasing resources

to local workload replica (vertically scaling).

7. An SLOC controller is deployed per cluster.

This controller is responsible for SLO viola-

tion detection, prediction, and enforcement

actions to be performed across all the nodes

in the cluster. The enforcement actions will

include adding or removingworkload replicas

(horizontally scaling) and migrating a replica

to a resource-richermachine (livemigration).

As illustrated above, SLOC will introduce sev-

eral fundamental improvements to the SLO man-

agement in the cloud. At the same time, the design

philosophy of our SLOC framework is to adopt

best-practices building cloud-native systems and

reuse existing stat-of-the-art approaches when-

ever possible.

RELATED WORK
Depending on explicit considerations of SLOs,

users’ level of involvement, and support of elastic-

ity concerns we group current approaches into

four categories: i) profiling-based, ii) history-

based, iii) SLO-based, and iv) black box.

The first category requires a workload to be

profiled before it is deployed. PerfIso13 and Qua-

sar6 are examples of this approach. PerfIso aims

to improve resource utilization on single

machines/VMs by scheduling batch jobs next to

latency-sensitive (primary) services by dividing

the available CPU cores into categories. Profiling

of the primary workload is required to determine

the size of the buffer category, i.e., cores that can

be used by either workload type. Quasar aims to

Figure 3. SLOC component diagram (partial view).
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improve resource utilization in clusters. It

requires multiple profiling runs of an application

to be able to classify the application and thus

determine the efficiency of scaling it vertically

and horizontally. Unfortunately, collecting profil-

ing data can be problematic, because in public

clouds it is not always possible to obtain this

information beforehand.3 Even if it can be

obtained, workloads that were not encountered

during profiling can have a negative impact,

because the system often does not know how to

classify them.14

The second category includes approaches

that require historical log data as input. Based

on load and log information the authors of21

dynamically instantiate Markov Decision Pro-

cess models and then use probabilistic model

checking to derive elasticity decisions. Resource

Central5 monitors VMs and learns consistent

behaviors from these data offline, which makes

it also history-based. It then uses these learned

behaviors to provide predictions to resource

managers. The main drawback of this approach

compared with SLOC is that it requires existing

log data as input. If this log data is not based on

all typical workloads, a similar problem like with

profiling-based approaches may occur.

The third category requires the definition of

some sort of SLO. The PARTIES3 resource con-

troller relies on QoS specifications, to schedule

multiple latency-critical applications on the

same host. Heracles18 colocates batch jobs with

latency-critical applications while maintaining

the SLOs of the latency-critical services. Wang et

al.23 combine vertical and horizontal scaling to

maintain a certain availability (an SLO) of a ser-

vice, scaling out to achieve the target availability

and scaling up to control costs when the SLOs

are already fulfilled.

Out of the four categories, this one has the

highest similaritywith SLOC. It, too, requires devel-

opers to specify SLOs for their applications and/or

components.However, SLOCwill expand the reach

of these specifications to include all three elasticity

dimensions and will allow developers to specify

more high level SLOs than existing approaches,

while deriving low level requirements itself.

The fourth category requires no prior knowl-

edge of the applications running on a cluster,

but depends solely on the monitoring data and

is thus called a black-box approach. It may be

argued that profiling- and history-based meth-

ods are also black-box approaches, because no

internal knowledge of the running application

needs to be provided by the developer.

However, with a profiling-based method, one

or more profiling runs need to be carried out,

which serve as input to the resource/elasticity

optimizer. History-based approaches require log

data to be existent when the optimizer is started.

A black-box method needs neither profiling runs

nor existing log data. PerfIso requires profiling

data, yet its authors call it a black-box approach,

because it is not concerned about the details of

the OS or the primary application. Scavenger15

aims to improve resource efficiency by schedul-

ing background jobs next to foreground VMs. To

this end, it uses the mean and standard devia-

tion of the foreground tasks’ usage of various

resources to optimize the contention of memory,

network, processor cache, and CPU cores. Com-

bining vertical scaling with horizontal scaling

measures results in “significant cost savings

over” committing entirely to one of the two tech-

niques.11 Gandhi et al.11 found scaling up to be

typically better when there are strict SLOs, while

scaling out being typically superior when there

is a high load. However, horizontal scaling needs

to take limitations of the architecture of a cloud

provider into account as well. ScaleBench16 is a

benchmark for detecting capacity degradation

when scaling an application out. Unlike SLOC,

black-box approaches do not require any SLOs

to be defined for applications. However, these

approaches have the limitation that they cannot

optimize the resources assigned to a workload

according to all the developer’s needs. A devel-

oper may want a certain response time, but only

if it does not exceed a maximum cost. Without

specifying what is needed, an optimizer cannot

exactly deliver what the developer wants.

CONCLUSION
Cloud service consumption is ever-stronger

moving towards API-based consumption models.

The interaction with complex business units is

done through a well-defined API that shields users

from underlying complexities such as microser-

vice deployment topologies and service meshes.

In spite of the practical importance SLOs and

Internet of Things, People, and Processes
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SLAs have for consuming contemporary cloud

services, vast majority of cloud platforms provide

support for SLAs only in terms of statically prede-

fined SLOs, e.g., service availability, and low-level

resource capacity guarantees, e.g., CPU usage.

Furthermore, to date there is only limited support

to clearly map workload performance require-

ments to the resource capacity guarantees. In this

article, we introduced the SLOC framework. The

core idea behind our SLOC framework is to enable

SLO-native management of elastic Cloud resour-

ces. We discussed how our SLO-native approach

introduces a paradigm shift from general, busi-

ness logic agnostic, low-level SLAs to intent-based,

SLO-first, performance-driven, and orchestration-

aware elasticitymodels.

One of SLOC’s main objectives is to exploit

and advance current support for managing elas-

ticity concerns in order to achieve better sup-

port for SLOs.

To this end, we intend to build on our previ-

ous work on elasticity space and boundaries as

well as to facilitate defining and enforcing soft

and hard SLO constraints in terms of elasticity

mechanisms. The core of SLOC’s approach

revolves around three main concepts: SLO elas-

ticity policy language, SLO observability, and

SLO elasticity controlling. We provided an over-

view how these concepts symbiotically enable

the paradigm shift toward SLO-native cloud com-

puting, hence unlocking the potential of coher-

ent, congruent, full-stack elasticity strategies to

efficiently deal with workload SLOs and SLAs. In

the future, we will continue our work along the

presented road map in order to deliver an open

source implementation of our SLOC framework.
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