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Osmotic Message-
Oriented Middleware for 
the Internet of Things 

Message-oriented middleware is a key technology in 

today's Internet of Things (IoT). Centralized message 

brokers facilitate decoupled device-to-device 

communication and can transparently scale to handle 

many millions of messages per second. However, 

Cloud-based solutions, such as AWS IoT or Azure 

IoT Hub, are challenged to satisfy the stringent 

Quality of Service (QoS) and privacy requirements of 

many modern IoT scenarios. Such scenarios are complex because they are not only 

distributed, but dynamic, as elements physically move, fail, and/or (dis-)connect to/from 

the network. Instead, distributed middleware needs to leverage the ever- increasing 

amount of resources at the edge of the network to provide reliable, ultra-low-latency, 

and privacy-aware message routing. But the heterogeneity and volatility inherent to 

Edge resources, and the unpredictability of mobile clients, make it extremely 

challenging to provide resilient coordination mechanisms and guaranteed message 

delivery. Applying Osmotic Computing principles to message-oriented middleware 

opens new opportunities for solving these challenges. 

Message-oriented middleware (MOM) has undergone several architectural paradigm shifts over 
the past decades. The scalability issues of using centralized servers for application-layer message 
dissemination were discussed intensely during the peer-to-peer era, and many solutions based on 
completely decentralized peer-to-peer architectures were developed.1 But the forces of monopo-
lization and the widespread adoption of Cloud computing have caused many commercial solu-
tions to return to a centralized approach, where scalability is largely achieved by consolidating 
resources into massive data centers. Amazon’s AWS IoT,2 or Microsoft’s Azure IoT Hub,3 for 
example, are massive transparently scaling centralized brokers that can handle billions of mes-
sages per second, even in the face of varying load, and at relatively low cost. However, despite 
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further advances in Cloud computing and clustering techniques, the IoT and related application 
scenarios have introduced new challenges, in particular for centralized systems. IoT applications 
with ultra-low latency, network resilience, or stringent data privacy requirements cannot be im-
plemented by Cloud-based solutions alone, but demand decentralization. Yet, system engineers 
have grown accustomed to the convenience and benefits of centralized deployment and manage-
ment. 

Edge computing has been recognized as a solution to this dilemma.4 By leveraging the ever-in-
creasing amount of resources at the edge of the network for computation, data management, and 
application-layer message dissemination, many of the QoS and privacy challenges can be ad-
dressed. Edge computing also recognizes the Cloud as a necessary and integral part of a holistic 
system. The Edge can hand off compute intensive tasks to the Cloud, or forward processed data 
for long-term storage and offline analytics. But how to efficiently and effectively integrate the 
Cloud and the Edge remains a topic of debate. The heterogeneous nature of edge resources, and 
their unpredictable availability make it challenging to provision and manage them in a central-
ized manner. Client mobility further complicates matters, especially with respect to message de-
livery guarantees and QoS optimization in MOM. 

Osmotic computing has been proposed as a new computing paradigm for Edge/Cloud integra-
tion.5 It borrows from the biological principles of osmosis, where solvent molecules seamlessly 
diffuse into regions of higher solute concentration. Although osmotic computing was originally 
conceived for the dynamic management of microservices across federated Edge/Cloud infra-
structure, it has enjoyed success in other problem areas such as stream processing for IoT or deep 
learning.6–7 We argue that osmotic computing principles can be applied to seamlessly integrate 
Cloud-based MOM into Edge computing. Osmotic computing can abstract how we think about 
elasticity of MOM towards the Edge, i.e., dynamically moving or provisioning message brokers 
from the Cloud the Edge based on current demands. In particular, we propose an architecture 
based on two diffusion models: broker and client diffusion. From a static centralized deployment 
in the Cloud, we bootstrap a network of brokers that diffuse into the Edge based on resource 
availability, and the number of clients and their proximity to Edge resources. Clients in close 
proximity diffuse to the Edge depending on broker proximity and the potential to optimize QoS 
between the clients. We present an architecture, and proximity-detection and orchestration mech-
anisms to implement MOM based on osmotic computing principles.  

THE NEED FOR EDGE-ENABLED MOM 
Modern IoT scenarios highlight the need for MOM that leverages resources at the edge. For ex-
ample, let us consider the following scenario from the mobile health (mHealth) domain. In a ma-
jor disaster situation, effective coordination and prompt reaction of emergency teams is 
paramount to save people’s lives. To support on-premises decision-making, first responders at-
tach wearable biosensors to patients, which continuously publish medical signs. Emergency 
technicians carry mobile devices with software to visualize patient data, trigger alerts, and coor-
dinate team efforts. Cloud-based IoT platforms may be impractical or unreliable in this case, as 
such health-critical mobile systems must be resilient towards network partitions, and require 
near-real time data processing and message exchange. Instead, resources in close proximity, such 
as tactical cloudlets8 deployed in emergency vehicles must be used to provide necessary services. 
From there, data can be processed, forwarded to hospitals for further analytics and acute patient 
care, and handed off to the cloud for long-term storage. 

MOM plays a critical role in this type of scenario. It has to facilitate low-latency communication 
between devices in close proximity, e.g., to provide immediate alerts to changing medical condi-
tions, while still being able to disseminate messages to locations on different levels of geo-
graphic dispersion. However, the mobility and unpredictability of both clients and resources that 
could act as brokers require a completely dynamic operational mechanism. In Cloud-based 
MOM, operational configuration, such as broker addresses, publish/subscribe topics, etc. are typ-
ically best defined at deployment time. In contrast, Edge-based MOM needs to react to spontane-
ously emerging network structures and device congregations, such as our disaster scenario. This 
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also means that clients need to be able to quickly locate the closest broker, and QoS optimiza-
tions need to consider that proximity between clients and brokers may change during runtime, 
leading to dynamic routing as end and edge devices change location. 

State-of-the-Art 
Messaging middleware, publish/subscribe systems in particular, have enjoyed immense research 
interest over the past decades. Systems like Hermes9 or PADRES10 have led to an entire body of 
research dedicated to optimizing and enabling robust message dissemination in complex peer-to-
peer overlay networks. The advent of Cloud computing and the IoT has changed the landscape of 
real-world messaging solutions dramatically. 

Over the past few years, many commercial cloud-based messaging solutions have emerged that 
target IoT platforms. Amazon’s AWS IoT2, Microsoft’s Azure IoT Hub3 and others all aim at 
providing transparently scaling IoT device integration via pub/sub messaging. Although these 
solutions can deal with massive amounts of devices and messages, they cannot satisfy the strin-
gent QoS and latency requirements imposed by many IoT scenarios, as they completely disre-
gard proximity and edge resources. 

Some open-source solutions have shown tentative efforts to provide basic mechanisms for ena-
bling real-world edge computing applications. The popular message brokers Mosquitto or 
HiveMQ, for example, provide the concept of bridging, where brokers can be deployed at the 
edge and statically configured to forward messages of specific topics to centralized brokers.11–12 
JoramMQ13 can model a hierarchical broker tree to allow low-latency communication in pre-de-
fined subsystems. These approaches are extremely limited in their operational capability, as they 
are all static in nature. 

Only recently have researchers started to investigate the challenges of IoT and proximity aware-
ness that confronts messaging middleware. MultiPub,14 for example, manages a broker cluster 
that spans multiple cloud regions, and optimizes latency for clients based on their proximity to  a 
region. EMMA15 goes one step further in that it considers brokers on arbitrary edge resources, 
and dynamically re-configures client-broker connections at runtime. PubSubCoord16 has also 
identified Edge/Cloud integration as a challenge for IoT, and proposes a dynamic broker system 
consisting of edge and routing brokers. 

OSMOTIC MESSAGE-ORIENTED MIDDLEWARE 

Design Goals of Osmotic MOM 

As we have illustrated, the IoT and edge computing architectures provide a great deal of chal-
lenges when building messaging middleware. Based on our motivating scenario and existing 
analyses of edge computing characteristics,17 we have identified several key design goals that 
drive the design of our architecture and control mechanisms. 

Stringent Latency Requirements 

Optimizing end-to-end latencies for clients is one of the key goals of our middleware. Most of 
the latency in messaging middleware is caused by packet routing, lost packet retransmission pro-
cessing, and physical propagation delays of network links. Routing messages to the Cloud and 
then disseminating them from there is wasteful, especially if device-to-device communication 
happens in close proximity. For these situations, brokers deployed at the edge can provide ultra-
low latency communication. At the same time, subscribers may be located at geographically dis-
persed locations, e.g., a data analytics services in the Cloud, meaning that messages must be for-
warded to the Cloud if necessary. 
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Mobile Brokers and Endpoints 

Mobility is a fundamental element of IoT19 and Edge computing and therefore must be consid-
ered as such by osmotic middleware by design. In our scenario, not only clients, but also brokers 
can be mobile. Proximity between nodes may change any time during runtime, and the system 
should be equipped with mechanisms to maintain optimized QoS, even in the face of client or 
broker mobility. Providing message delivery guarantees in the face of mobility is another promi-
nent challenge. 

Variable Resource Availability 

Resources at the edge are a key component in enabling the previous two goals. However, be-
cause these resources are highly dynamic, we cannot predict or rely on their availability. We 
therefore also cannot provide static operational configurations. Instead, a central configured de-
ployment should be able to organically diffuse into edge regions where and when necessary. A 
key mechanism required to facilitate this is proximity detection. 

Monitoring and Management 

Looking at the previous goals, it becomes clear that proximity is a fundamental concept in IoT 
and edge computing, and needs to become a first-class-citizen not only in messaging middle-
ware, but edge computing algorithms and systems in general. This would appear to imply that 
location of brokers and endpoints must be determined in real-time and their physical relationship 
to each other must be deduced in terms of the local topology. As we’ll see, proximity can instead 
be determined by calculating effective network latency. Additionally, routing of messages be-
tween elements must balance reliability and performance considerations. Moreover, scalability 
of proximity monitoring is a key challenge to avoid excessive strain on the network and resource 
constrained devices. 

IoT Heterogeneity 

A plethora of messaging protocols and client hardware for the IoT exists that may be difficult to 
replace or update.18 Existing infrastructure should seamlessly integrate with a distributed mes-
saging middleware. Furthermore, middleware control mechanisms need to be completely trans-
parent to end devices. 

Architecture 
Figure 1 shows a high-level overview of our architecture, which includes the components that 
follow. 

 

Figure 1. The architectural components of osmotic message-oriented middleware. The osmotic 
controller orchestrates a network of brokers and gateways via a monitoring and control plane.  
The gateways transparently connect clients to the system. 
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Broker Network 

Brokers implement a server-side messaging protocol (e.g., MQTT), and facilitate message dis-
semination to clients and within the broker network. Because brokers are treated as an ephemeral 
resource, their control mechanisms have to be entirely dynamic. This particularly concerns ad-
dressing and message routing. However, maintaining a global view of the network topology at 
each broker would be impractical. Instead, the Cloud maintains a global view, whereas brokers 
only maintain a local view of the topology and routing tables necessary to operate within their 
contextual boundary. Brokers also monitor and provide access to key performance indicators, 
such as resource consumption, message throughput, average routing delay, etc., to provide coor-
dination and load balancing algorithms with necessary data. 

Gateway Network 

Gateways are an integral part of the coordination fabric and provide clients transparent access to 
the broker network. They serve two main purposes: 1) to seamlessly integrate existing IoT infra-
structure into the network, and 2) to enable client and broker mobility. Gateways act as interme-
diaries that intercept protocol control packets from clients to understand their context (e.g., 
connection information, Message Delivery Agreements (MDAs) and topic subscriptions) and 
allow the transparent reconnection of clients to other brokers when adapting to varying network 
QoS or topology changes. They serve as proxies to measure proximity between clients and bro-
kers. Gateways also do simple data processing such as filtering or protocol translation via proto-
col adapters. Because they are lightweight, gateways can typically be easily hosted by resource-
constrained IoT devices, and can serve either one or multiple clients. 

Osmotic Controller 

The controller maintains a full view of the network topology and is responsible for bootstrapping 
and orchestrating the system. New brokers and gateways register with the controller when they 
enter the network, and continuously report data to the controller via the monitoring plane. The 
controller acts as a registry and discovery service for edge resources to which brokers could po-
tentially be provisioned. Brokers are not dependent on the controller to process and forward mes-
sages because they maintain a local view of the network topology and routing tables. However, 
the osmotic controller is required to 1) diffuse clients, i.e., enacting QoS optimization decisions 
by instructing gateways to connect to other brokers, and 2) diffusing brokers, i.e., elastic provi-
sioning of brokers to edge resources. 

Protocol Adapters 

Protocol adapters are a subcomponent of gateways and a fundamental part in controlling the het-
erogeneity inherent to IoT. With these adapters, gateways can act as protocol bridges. For exam-
ple, clients may send messages via a different protocol than implemented by the middleware. To 
seamlessly integrate these clients into the system, a protocol adapter on the gateway translates 
messages from the client protocol to the server protocol. Because of the plethora of protocols 
available in the IoT,17 it would be impractical to equip every gateway with all existing adapters 
at deployment time. Instead, gateways can pull adapters from the controller on demand at 
runtime based on their context and connected clients. 

Monitoring Plane 

Monitoring a network’s topology and QoS is a key element for edge-enabled message-oriented 
middleware. It is particularly important for determining proximity between clients and brokers, 
as proximity is calculated from network metrics such as latency, routing hops, or physical meas-
urements such as signal strength. Both gateways and brokers need to be able to measure and re-
port on their surrounding network state. We discuss proximity detection, and QoS and demand 
monitoring in more detail in Elastic Diffusion. 
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Control Plane 

A main function of the osmotic controller is to provision brokers to edge resources, and coordi-
nate client diffusion. To that end, the controller issues control commands via the control plane to 
brokers and gateways. Brokers and gateways provide control endpoints that accept coordination 
commands, such as an instruction to reconnect to a different broker. We discuss provisioning and 
network reconfiguration in more detail in Elastic Diffusion.  

Elastic Diffusion 

As we have established, Cloud-based message brokering cannot satisfy the stringent QoS re-
quirements of IoT applications. This particularly concerns device-to-device communication in 
close proximity. Instead, brokers at the edge should facilitate low-latency communication for de-
vices in close proximity, and forward messages to the cloud for further dissemination. This al-
ready works well for simple configurations and static infrastructure. For example, Mosquitto can 
be used to statically forward specific topics from one broker to another. However, as our motiva-
tional scenario illustrated, edge computing applications require a dynamic system that can adapt 
to changing network QoS and topology, while still allowing centralized configuration and man-
agement. During runtime, when clients at the edge require low-latency communication, the bro-
ker network needs to be expanded by provisioning brokers to edge resources dynamically. The 
routing topology needs to be updated, and clients in close proximity need to be migrated to the 
new broker. When client communication stops, these brokers can be discarded, and the network 
may shrink again. We call this process elastic diffusion. Figure 2 illustrates the concept. 

Starting from a single configuration in the Cloud, i.e., an osmotic controller and a root broker, 
the system grows and shrinks the broker network during runtime to adapt to changing network 
topology, client mobility and demand, and resource availability. Brokers diffuse to edge re-
sources when there is potential to optimize client QoS. Similarly, clients diffuse to edge brokers 
to reduce end-to-end latencies, and to balance load between brokers. A key mechanism to facili-
tate this is a concept we call osmotic pressure. 

 

Figure 2. Osmotic pressure facilitates controlled diffusion of brokers and clients to the edge. Clients 
exert osmotic pressure on local resources depending on their proximity and demand. The osmotic 
controller aims to balance osmotic pressure throughout the system. 

Osmotic Pressure 

To facilitate elastic diffusion, we first need an aggregated quantification of proximity and de-
mand. To that end, we define a metric inspired by a core concept of osmosis: osmotic pressure. 
Similar to the biological process, in our system, osmotic pressure causes brokers to diffuse onto 
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edge resources. Clients in close proximity to edge resources cause a “pulling” effect on those re-
sources. When the pressure exceeds or drops below a given threshold, the system deploys or re-
moves brokers from these resources. Similarly, brokers deployed on edge resource cause a 
“pulling” effect on clients in close proximity, which causes a reconfiguration of client-broker 
connections to optimize QoS for those clients. For edge resources, we calculate osmotic pressure 
based on the amount of clients and their proximity to the resources. Osmotic pressure is high 
when many clients exist in close proximity to a resource. The exerted pressure is increased with 
the message throughput of these clients, i.e., if local demand is high. 

Proximity Detection & Demand Monitoring 

To effectively calculate osmotic pressure, we need 1) a good quantification of the proximity be-
tween brokers and resources, 2) a scalable way to continuously monitor this proximity, and 3) a 
way to monitor demand of clients. In other distributed systems, such as Content Distribution 
Networks (CDN), closeness between nodes is often defined and determined by geo location, 
routing hops, or round-trip times (RTT). For 1), we argue that, because the main goal is to opti-
mize end-to-end latency between clients, using the effective network latency is the best way of 
determining proximity between clients and resources. Additionally, for determining proximity 
between clients and brokers, brokers can add their average message buffering delay to the effec-
tive network latency to calculate a more precise RTT value. After all, a “close” broker on a con-
gested resource can behave as if it were physically much farther away. However, in contrast to 
CDN, where proximity is determined on a per-request basis via DNS probing, osmotic MOM 
needs to continuously monitor the effective network latency between all nodes, which introduces 
serious scalability challenges. Simple monitoring solutions can cause high network overhead that 
becomes difficult to manage15 For 2), we therefore propose a synthesis of network location ap-
proaches19 with concepts such as interest management, where the frequency of monitoring is 
concentrated to relevant regions. For 3), a combination of throughput monitored from brokers 
and gateways can be used to estimate demand for a specific region, topic or content type. 

Broker Diffusion 

Like in osmosis, where solute molecules exert osmotic pressure, clients in close proximity of 
edge resources exert osmotic pressure on these resources, causing an imbalance in the network. 
To balance the osmotic pressure, the osmotic controller reacts by deploying a broker to the re-
source. We assume that edge resources provide some form of container-based virtualization, e.g., 
Docker, which allows the controller to deploy new brokers as containers. The new broker is inte-
grated into the network and the controller reconfigures the routing overlay, i.e., dynamically cre-
ates topic bridges to forward messages to the cloud or other brokers if necessary. When the 
osmotic pressure drops, e.g., because clients move to other locations or leave the network, bro-
kers may be discarded by the system. 

Client Diffusion 

Clients’ connections are migrated into edge regions based on their proximity to brokers deployed 
at the edge. If brokers are deployed at the edge due to osmotic pressure, clients will diffuse there. 
Because osmotic pressure is calculated using both proximity and broker performance indicators, 
we have a twofold effect: clients will experience better end-to-end latencies as link usage is min-
imized, and load is balanced between brokers that provide similar QoS to those clients. When 
brokers are discarded because of low osmotic pressure, or because of a broker outage, clients dif-
fuse back to a broker closer to the cloud. 

Message Delivery Agreement 
When it comes to message delivery guarantees, there are always trade-offs between the level of 
consistency and the end-to-end latency a system can provide, between transmission reliability 
and bandwidth utilization, and between transmission delay and processing requirements and se-
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quencing. We recognize that even a single application can have several types of consistency de-
mands. Take for example an analytics tool in our mHealth application. For some subscribers, it 
may be critical to receive every single data point in the correct order and without duplicates. For 
others, duplicate data may not be a problem, but the requirement is ultra-low latency delivery. 
The MQTT protocol addresses this in part via its “quality of service” concept, which defines the 
type of delivery guarantee a broker provides: at least once, at most once, and exactly once deliv-
ery. 

In a single-broker system, implementing these types of guarantees is relatively straight forward, 
as MQTT demonstrates. However, in our distributed broker system, the type of consistency that 
the system must provide significantly affects how brokers and clients have to be coordinated dur-
ing diffusion. For example, when a subscriber to a specific topic is migrated from one broker to 
another, messages received by the target broker during the reconnection process may not reach 
the migrating client. This may be problematic for some applications, but a coordination mecha-
nism that provides this type of consistency guarantees can be costly in terms of resource con-
sumption and latency penalties. 

To achieve more granular control over this, we propose the concept of MDA that are negotiated 
between clients and brokers. An MDA is a type of Service Level Agreement (SLA) regarding 
message delivery. It controls how much effort the broker network makes to deliver messages be-
tween clients for a given type of topic or content, and provides the client with an estimate of the 
incurring latency penalty. 

MDAs have two parameters: a consistency guarantee and a latency estimate. The consistency 
guarantee is closely related to MQTT’s message delivery QoS: i.e., defines an “at least once”, “at 
most once”, or “exactly once” delivery semantic. The latency estimate is calculated from the cur-
rent state of the network, the current broker workload, and the latency penalties caused by 
providing increased consistency. When a client requests a consistency guarantee for a specific 
type of topic or content, the broker responds with whether it can provide this guarantee, and if 
so, an estimate of how long message dissemination will take under this type of guarantee. This 
mechanism helps fine-tune an application’s response time for clients, allows clients to handle the 
trade-off between latency and consistency, and allows the system to optimize coordination. 
When highly consistent delivery is required, the system must make extra efforts to maintain con-
sistency during broker or client diffusion. 

CONCLUSION 
How to best achieve seamless Edge/Cloud integration to fully enable the Internet of Things is 
still subject of debate. The increasing interest in Edge computing has led to new computing para-
digms that disrupt current approaches for IoT systems. One such paradigm is osmotic compu-
ting. We have shown how principles of osmotic computing can be applied to message-oriented 
middleware, to provide a distributed network of brokers that elastically diffuse to edge resources 
on demand. Unlike Cloud-based IoT platforms that typically completely neglect the proximity of 
devices, osmotic MOM elevates proximity to be of primary concern, both for deploying new 
brokers, and to optimize responsiveness for clients. Our architecture can serve as stand-alone 
messaging middleware to facilitate device-to-device communication in IoT environments, and 
can also complement complex edge computing applications that rely on message brokers, such 
as distributed real-time data analytics applications. 
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