
Towards Deviceless Edge Computing:
Challenges, Design Aspects, and Models
for Serverless Paradigm at the Edge

Stefan Nastic and Schahram Dustdar

1 Introduction

Recently, Cloud Computing, Edge Computing, and the Internet of Things (IoT) have
been converging ever stronger, sparking creation of very large-scale, geographically
distributed systems [1, 2]. Such systems intensively exploit Cloud Computing
models and technologies, predominantly by utilizing large and remote data centers,
but also nearby Cloudlets [3, 4] to enhance resource-constrained Edge devices (e.g.,
in terms of computation offloading [5–7] and data staging [8]) or to provide an
execution environment for cloud-centric IoT/Edge applications [9, 10].

Serverless computing is an emerging paradigm, typically referring to a software
architecture where application is decomposed into “triggers” and “actions” (or
functions), and there is a platform that provides seamless hosting and execution
of developer-defined functions (FaaS), making it easy to develop, manage, scale,
and operate them. This complexity mitigation is mainly achieved by incorporating
sophisticated runtime mechanisms into serverless or FaaS platforms. Hence, such
platforms are usually characterized by fully automating many of the management
and operations processes. Therefore, serverless computing can be considered as the
next step in the evolution of Cloud platforms, such as PaaS, or more generally of the
utility computing.

While originally designed for centralized cloud deployments, the benefits of
serverless paradigm become especially evident in the context of Edge Com-
puting [11]. This is mainly because in such systems, traditional infrastructure
and application management solutions are tedious, ineffective, error-prone, and
ultimately very costly. Luckily, some of the existing serverless techniques, such

S. Nastic (�) · S. Dustdar
Distributed Systems Group, TU Wien, Vienna, Austria
e-mail: nastic@dsg.tuwien.ac.at; dustdar@dsg.tuwien.ac.at

© The Author(s) 2018
V. Gruhn, R. Striemer (eds.), The Essence of Software Engineering,
https://doi.org/10.1007/978-3-319-73897-0_8

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73897-0_8&domain=pdf
mailto:nastic@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
https://doi.org/10.1007/978-3-319-73897-0_8

122 S. Nastic and S. Dustdar

as sandboxed execution of polyglot tenant-provided code, can be applied on Edge
without substantial modifications. The most common approach to runtime execution
environments is to utilize Linux containers (such as Docker). Unfortunately, due
to inherently different nature of Edge infrastructure, for example, in terms of
available resources, network, geographical hyper-distribution, very large scale, etc.,
fundamental architecture and design assumptions behind cloud-based serverless
computing need to be reexamined and specifically tailored for the Edge infrastruc-
ture in order to realize Deviceless Edge Computing. Some of the main research
challenges of the emerging Deviceless Computing include:

• Resource pooling and rapid elasticity. Traditional serverless platforms utilize
commodity infrastructure, small footprint, and short execution duration, com-
bined with statistical multiplexing of a large number of heterogeneous workloads
over time [12]. Elasticity at the Edge implies challenges not present in the Cloud,
mostly due to different nature of the infrastructure, the topology of network
connectivity, and locality-awareness.

• Security. Unlike serverless platforms which often operate in secured environ-
ments, the Edge is exposed to various attacks, requiring much better protection
and isolation for the individual hosts, tenants, and applications.

• Automated provisioning and management at scale. Due to dynamicity, hetero-
geneity, geographical distribution, and the sheer scale of the Edge infrastructure,
traditional management and provisioning approaches are hardly feasible in prac-
tice. Thus, novel techniques, which will provide a uniform view and interaction
with both Cloud and Edge, are needed [13].

• Scheduling on loosely coupled and scarce Edge resources. Scheduler is one of
the core components in cloud-based serverless computing. However, at the Edge,
application scheduling, orchestration, and configuration management cannot be
done in an easy and predictable manner (e.g., by Deviceless platform runtime
mechanisms) due to the limited nature of Edge resources and their inherent
volatility.

• Deviceless application development. In Deviceless paradigm we trade explicit
device management for slightly complex application business logic. This means
that the development context of such applications needs to grow beyond writing
custom business logic to also consider the involved Edge resources and their
capabilities, but on a higher level of abstraction, for example, in code.

• Edge-centric governance. Due to inherently different nature of Edge-based sys-
tems, traditional governance approaches need to be reevaluated and particularly
designed to be suitable in the new Edge context. In particular, governance
objectives (law, compliance, etc.) are not easily mapped to concrete operations
processes (e.g., querying sensory data streams or adding/removing devices).
Additionally, making the governance approaches feasible in deviceless paradigm
requires full automation of such operational governance processes.

In this chapter, we continue our line of research towards realizing the novel
paradigm of Deviceless Edge Computing, by extending the previously defined con-
cepts [11] and by building on our existing work in the area of Edge Computing and

Towards Deviceless Edge Computing 123

IoT, which serve as the main enablers of Deviceless Computing. In particular, we
propose a reference architecture for the Deviceless Edge Computing. Furthermore,
we analyze the main aspects of realizing the Deviceless Computing paradigm from
two main points of view: (1) required support for application development, in terms
of programming models (Sect. 4), and (2) required runtime support for deviceless
applications, in terms of main deviceless platform mechanisms (Sect. 5).

The remainder of the chapter is organized as follows: Sect. 2 presents the state of
the art. Section 3 introduces a reference architecture of a Deviceless Edge Platform.
In Sect. 4 we present our programming model for developing deviceless functions.
Section 5 introduces the provisioning model and a middleware for provisioning
Deviceless Edge applications. Finally, Sect. 6 concludes the chapter and gives an
outlook of future research.

2 Related Work

Recently, the serverless computing paradigm has been rapidly emerging in the
IT industry, since its appearance in AWS Lambda1 in 2014. Major public Cloud
providers have introduced comparable FaaS offerings—Azure Functions,2 Google
Cloud Functions.3 In addition to commercial offerings, several open-source initia-
tives have emerged, including Apache OpenWhisk4 (originally developed by IBM,
now under incubation at ASF jointly with Adobe and additional companies), as well
as several projects developed in the open by various vendors such as Iron Functions,5

Fission,6 and Kubeless.7

In spite originating as a special case of Cloud computing, the FaaS/serverless
paradigm has since evolved to also become applicable beyond the traditional Cloud
data centers. For example, the PubNub BLOCKS8 offering enhances their real-time
data stream capabilities running on a network of Edge data centers (e.g., used in
IoT applications to stream events and logs between the Edge and the Cloud), with
the ability to invoke custom handlers (provided by the application developer) on
the data path. Similarly, Amazon Lambda@Edge9 allows to run custom Javascript
handlers on web traffic going through their CloudFront (CDN) facilities. Moreover,
there are recent attempts to expand applicability of “serverless” even further, to

1http://aws.amazon.com/lambda/.
2http://azure.microsoft.com/en-us/services/functions/.
3http://cloud.google.com/functions/.
4http://openwhisk.org/.
5http://open.iron.io/.
6http://fission.io/.
7http://github.com/bitnami/kubeless.
8http://goo.gl/IIjkZi.
9http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html.

http://aws.amazon.com/lambda/
http://azure.microsoft.com/en-us/services/functions/
http://cloud.google.com/functions/
http://openwhisk.org/
http://open.iron.io/
http://fission.io/
http://github.com/bitnami/kubeless
http://goo.gl/IIjkZi
http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

124 S. Nastic and S. Dustdar

IoT gateways and devices—both commercial (e.g., Amazon Greengrass10) and
exploratory (e.g., OpenWhisk). However, most of these attempts are at early stages,
and architectural and design assumptions behind such approaches need to be
reevaluated, for example, to address the challenges described in Sect. 1, in order
for the serverless paradigm to be fully adopted in Edge computing environments, as
opposed to being an extension of Cloud (e.g., in CDN).

The core principle of the serverless paradigm includes fully automated orches-
tration, lifecycle management, and scheduling of both user-defined functions and
underlying resource pools. Recently, different approaches have emerged that focus
on utilizing principles of Service-Oriented Architecture (SOA), dynamic service
orchestration, and Cloud computing techniques, in order to facilitate execution of
data processing applications (e.g., with cloud offloading), but also provisioning and
management of vast Edge infrastructure. For example, in [14] the authors introduce
sensor-cloud infrastructure that virtualizes physical sensors as services and provides
management and monitoring mechanisms for the virtual sensors. However, their
support for provisioning and orchestration of virtual sensors is based on static
templates, which are not intended for dynamic reconfigurations and optimizations
required in Deviceless platform. OpenIoT framework [15] utilizes semantic Web
technologies and CoAP to enable web of things and linked sensory data. They
mostly focus on discovering, linking, and orchestrating Internet-connected objects.
Further, the authors focus on developing a virtualization infrastructure to enable
sensing and actuating as a service on the Cloud. They propose a software stack
which includes support for management of device identification, selection, and
aggregation. In [16] the authors develop an infrastructure virtualization framework
for wireless sensor networks. It is based on a content-based pub/sub model for
asynchronous event exchange and utilizes a custom event matching algorithm
to enable delivery of sensory events to subscribed cloud users and a range of
mechanisms to support SaaS applications. These approaches provide valuable
insights, advances, and a solid baseline to underpin the Deviceless Edge Computing
paradigm.

3 Deviceless Edge Platform

3.1 Approach

The main objective of our approach is to provide a full stack platform for supporting
executing and automatically operating Deviceless applications across Cloud and
Edge in a unified manner. The key role of the distributed Deviceless Edge Platform
is to facilitate automated management of the underlying resource pool and optimal
placement of applications/functions in order to support the envisioned deviceless

10http://aws.amazon.com/greengrass/.

http://aws.amazon.com/greengrass/

Towards Deviceless Edge Computing 125

execution model. This approach allows for combining the benefits of the Edge
(lower response time, ability to manage heterogeneous data) with the computational
and storage capabilities of the Cloud. For example, time-sensitive data, such as life-
critical vital signs, can be analyzed at the Edge close to where they are generated
instead of being transported to the Cloud for processing. Alternatively, selected data
can be forwarded to the Cloud for a further, more powerful analysis and long-term
storage.

3.2 Platform Usage and Architecture Overview

Figure 1 shows a high-level view of the platform and main top-down control process
(left) and application execution and results delivery process (right). The proposed
deviceless paradigm is particularly suitable for managing different granularity
of user-defined business logic functions bottom-up. This means that the Edge
focuses on local views (e.g., per Edge gateway) while the Cloud supports global

Infractructure Resource Pool

Resources Abstraction/Virtualization Layer

Cloud Edge/Fog Devices IoT Devices

Resource
configuration &
management

Runtime
management/
enforcement
mechanisms

Application/
Control

requirements/
goals

Business logic
functions
execution

Data
collection

Application
Endpoints/APIs

Goal to execution
mapping

Business Logic Functions Wrapper & APIs Layer

Serverless
execution

model

D
is

tr
ib

ut
ed

 D
ev

ic
el

es
s

Pl
at

fo
rm

O
rc

he
st

ra
tio

n
 L

ay
er

Monitor

Analyze Plan

Execute

Plugins/Extensions Runtime Mechanisms Layer

D
ep

lo
ym

en
t

S
ch

ed
ul

in
g

Pl
ac

em
en

t

El
as

tic
ity

Fa
ul

t
To

le
ra

nc
e

Q
oS

G
ov

er
na

nc
e

Deviceless Edge Application Model

Result delivery
views

Fig. 1 Deviceless platform architecture

126 S. Nastic and S. Dustdar

views, for example, combining and analyzing data from different Edge devices,
regions, or even domains. For example, in the case of data analytics applications,
data is collected from the underlying devices and delivered to the applications
via consumptionAPIs. More importantly, the application business logic such as data
analytics can be performed on Edge nodes, Cloud nodes, or both, and the results can
be delivered from any of the nodes directly, based on the desired view. Moreover,
the top-down control process allows decoupling of application requirements (What)
from concrete realization of those requirements (How). This allows developers to
simply define the application behavior and business logic and application goals
(e.g., regarding provisioning) instead of dealing with the complexity of different
management, orchestration, and optimization processes. Moreover, Fig. 1 shows the
Deviceless platform’s core architecture:

• Business Logic Wrapper and APIs Layer focuses on executing and managing
user-provided functions, for example, delivering required data to the function
and creating results endpoints. To this end, it wraps the user-defined functions in
executable artifacts such as Linux Containers and relies on the underlying layers
to perform concrete runtime actions and execution steps.

• The Orchestration Layer is responsible for interpreting and executing user-
defined functions, requirements, and configuration models. This layer acts
as a “gluing” component bringing together application’s configuration model,
business logic functions, and platform’s runtime mechanisms. Therefore, the
Orchestration Layer receives the application configuration directives, in terms
of high-level objectives such as to optimize network latency. It interprets and
analyzes these goals and decides how to orchestrate the underlying resources,
as well as the user-defined functions, by invoking the underlying runtime
mechanisms. To this end, this layer contains micro (Edge-based) and macro
(Cloud-based) orchestration and control loops. For example, it can utilize the
Scheduling and the Placement mechanisms to determine the most suitable node
(Cloud or Edge) for executing a function in order to reduce the network latency.

• The Runtime Mechanisms Layer is an extensible plug-ins layer, providing
mechanisms to support executing the actions initiated by the Orchestration
Layer. The Deployment, the Scheduling, the Elasticity, and basic reasonable
defaults for the Quality of Service (QoS) are the core runtime mechanisms. More
precisely, the platform has to determine the minimally required elastic resources,
provision them, deploy, and then schedule and execute analytics functions, which
will satisfy the QoS requirements. On the other hand, the Governance, the
Placement, the Fault Tolerance, and the extended QoS mechanisms are optional.
For example, in some cases, the sensory data, used by an application, could
be confidential and some geographical regions should be excluded. Placing
the computation (functions) closer to the data and deciding whether to use
Cloud or Edge resources could improve the QoS. Additionally, having a k-fault-
tolerant platform that can mitigate the risks of failures to acceptable level further
improves the QoS.

Towards Deviceless Edge Computing 127

In the remainder of the chapter, we particularly focus on two key aspects of
Deviceless Edge platform: its programming support for deviceless applications and
its support for application management and operation.

4 Programming Support for Deviceless Edge Computing

The main purpose of our programming model is to provide a programmatic view
on the whole application ecosystem, that is, the full stack from the infrastructure
to software components and services. The main principle behind our programming
model is everything as code. This includes providing support for writing deviceless
functions’ business logic, as well as representing the underlying infrastructure
components (e.g., gateways) at the application level and enabling developers to
programmatically determine their deployment and provisioning. Figure 2 shows a
component diagram with the logical structure of Deviceless Edge applications. The
main components of such application include custom business logic components,
that is, user-defined functions; resource provisioning and deployment logic (custom
or stock component provisioning); and operational governance logic. In the remain-
der of this section, we mainly focus on the programming support for deviceless
functions. More details on programmatic provisioning and governance can be found
in [17].

4.1 Programming Support for Deviceless Edge Functions

In our programming model, we consider a unified notion of deviceless functions.
However, we provide versatile abstractions, which enable expressing the functions’
business logic depending on the nature of their respective interactions with Edge or
Cloud resources. Figure 3 shows a simplified UML diagram of the programming

Deviceless
functions

Operational
governance logic

Infrastructure provisioning logic

Data and Control Points

Software‐defined Gateway

Intents and IntentScopes Governance and
infrastructure APIs

Provisioning library API

Fig. 2 Overview of deviceless application structure

128 S. Nastic and S. Dustdar

In
te

nt
S

co
pe

D
el

im
it

N
ot

ify

P
ol

l

S
en

d

O
pe

ra
to

r

D
at

aC
on

tr
ol

P
oi

nt

<
<

A
bs

tr
ac

t>
>

<
<

A
bs

tr
ac

t>
>

cr
ea

te
B

uf
fe

r(
co

nf
ig

ur
at

io
nM

od
el

)
in

iti
al

iz
e(

)
re

al
es

e(
)

on
C

re
at

e(
c:

C
on

te
xt

)
in

iti
al

iz
e(

)
sh

ut
D

ow
n(

)

re
ad

()
re

ad
B

at
ch

(t
im

eW
in

do
w

)
on

N
ew

ln
st

an
ce

(d
at

aI
ns

ta
nc

e)

w
rit

e(
da

ta
In

st
an

ce
)

us
es

us
es

de
fin

es
m

ap
s

to

ha
s

de
fin

es

D
at

aP
oi

nt
C

on
tr

ol
P

oi
nt

C
on

fig
ur

at
io

n
M

od
el

M
on

ito
rT

as
k

C
on

tr
ol

T
as

k

F
ilt

er
A

ttr
ib

ut
e

C
on

fig
ur

at
io

n

A
da

pt
er

C
ha

in

In
te

nt

T
as

k

lo
T

C
lo

ud
A

pp
lic

at
io

n

ap
pl

ie
d

on
.

F
ig
.3

Si
m
pl
ifi
ed

U
M
L
of

pr
og
ra
m
m
in
g
m
od
el
fo
r
D
ev
ic
el
es
s
ed
ge

fu
nc
ti
on
s

Towards Deviceless Edge Computing 129

model. Its key abstractions are Data and Control Points and Intents. Deviceless
functions can be executed in Edge devices to implement control and monitor tasks.
For example, a monitoring task includes processing, correlation, and analysis of
sensory data streams. Data and Control Points are provided to support such a task
development. Deviceless functions executed in the Cloud usually define virtual
service topologies by referencing the tasks. At the application level, we provide
explicit representation of these tasks via Intents, that is, developers write Intents to
dynamically configure and invoke the tasks. Further, developers use IntentScopes
to delimit the range of an Intent. For example, a developer might want to code the
expression: “stop all vehicles on golf course X.” In this case, “stop” is the desired
Intent, which needs to be applied on an IntentScope that encompasses all vehicles
with the location property “golf course X.”

4.2 Intents and IntentScopes

Intent is a data structure describing a specific task which can be performed in a
physical environment. In reality, Intents are processed and executed on the Device-
less platform, but enable monitoring and controlling of the physical environments by
triggering corresponding deviceless functions. Based on the information contained
in an Intent, a suitable task/function is dynamically selected, instantiated, and
executed. Depending on the task’s nature, we distinguish between two different
types of Intents: ControlIntent and MonitorIntent. ControlIntents enable applica-
tions to operate and invoke the low-level components, that is, provide a high-level
representation of their functionality. MonitorIntents are used by applications to
subscribe for events from the sensors and to obtain devices’ context.

Figure 4 shows the Intent structure and its most relevant parts. Each Intent
contains an ID, used to correlate invocation response with it or apply additional
actions on it. Additionally, it contains a set of headers, which specify meta-
information needed to process the Intent and bind it with a suitable task during
the runtime. Among other things, headers carry Intent’s name and a reference to
an IntentScope. Further, an Intent can contain a set of attributes, which are used
by the runtime to select the best matching task instance in case there are multiple

Intent

1:n

1:n

Id

has 1:n

Config. Param.
Payload

Security
Cost

Quality
Privacy
Value
Key

Header

Attribute

Data

appliedOn

IntentScopeTask

represents

Fig. 4 Intent structure

130 S. Nastic and S. Dustdar

Intent implementations available. Finally, Intent can contain data, which is used to
configure the tasks or supply additional payload. Generally, Intents allow developers
to communicate to the system what needs to be done instead of worrying how the
underlying devices will perform the specific task.

Our programming model also allows developers to define IntentScopes.
IntentScopes need to be defined explicitly and implicitly, that is, developers can
explicitly add entities to the scope by specifying their IDs or recursively prune the
GlobalScope. Formally, we use the well-known set theory to define IntentScope as
a finite, countable set of entities (set elements). The GlobalScope represents the
universal set, denoted by Smax; therefore, 8S.S � Smax/, where S is an IntentScope,
must hold. Further, for each entity E in the system general membership relation
8E.E 2 SjS � Smax/ must hold. Therefore, an entity is the unit set, denoted by
Smin. Empty set ; is not defined; thus, applying an Intent on it results with an
error. Finally, a necessary condition for an IntentScope to be valid is as follows:
IntentScope is valid iff it is a set S, such that S � Smax ^ S 6� ; holds. Equation (1)
shows operations used to define or refine an IntentScope. The most interesting
operation is �cond S. It is used to find a subset (OS) of a set S, which satisfies some
condition, that is, E 2 OS j E 2 S ^ cond.E/ D True.

S D SminjSmaxj �cond S j S [S j S \ S j S n S (1)

4.3 Data and Control Points

Generally, the main motivation for introducing the Data and Control Points is to
enable developing deviceless functions that encapsulate a domain-specific task.
Hence, they are used to develop domain libraries of deviceless functions. In this
context, a domain library contains a set of reusable functions that are responsible to
encapsulate domain-specific knowledge, most notably domain model and common
behaviors, in a reusable manner. For example, a building automation expert
developer could develop a domain library to facilitate development of higher-level
functionality for buildingmanagement systems. To this end, Data and Control Points
represent and enable management of data and control channels (e.g., device drivers)
to the low-level sensors/actuators in an abstract manner. Generally, they mediate
the communication with the connected devices (e.g., digital, serial, or IP based),
enable application-specific customizations of the channels, and also implement
communication protocols for the connected devices, for example, Modbus, CAN,
or I2C.

The DataControlPoint (Fig. 3) is an abstract class which provides main operators
and lifecycle management hooks for the Data and Control Points. Both DataPoints
and ControlPoints inherit from this component and encapsulate the specialized
behavior for reading sensory data (DataPoints) and preforming the actuations
(ControlPoints). In general, the DataControlPoint allows the developers to perform
concurrent reads and writes, regardless of whether the low-level drivers support

Towards Deviceless Edge Computing 131

sequential or concurrent reads and writes. In this way, the applications have
an impression of exclusive usage of the available devices. Another important
feature of DataControlPoint is that they enable developers to configure custom
behavior of underlying devices. For this purpose, each DataControlPoint can have a
ConfigurationModel associated with it. For example, an application can configure
sensor poll rates, activate a low-pass filter for an analog sensory input, or configure
unit and type of data instances in the stream.

The most important concept supporting the DataControlPoint is the Virtual-
Buffers, which are provided and managed by the Deviceless Edge Platform. In
general, such buffers enable virtualized access to and custom configurations of
underlying sensors and actuators. They act as multiplexers of the data and control
channels, thus enabling the device applications to have their own view of and
define custom configurations for such channels. To this end, the VirtualBuffers
wrap the device drivers and share a common behavior with them. For example,
they can be initialized, shut down, and released. Both buffers and drivers lifecycle
are managed by the platform. Finally, to support application-specific configurations
such as sensor poll rates, filters, or scalers, each virtual buffer can have an
AdapterChain. Adapter chains reference different Adapters, which are specified and
parametrized via DataControlPoint’s ConfigurationModel. Any raw sensing value
is passed through such adapter chain before being delivered to a DataPoint.

5 Provisioning Support for Deviceless Edge Computing

In this section, we shift focus from deviceless functions and application level
support to the core Deviceless Edge Platform components. In particular, we discuss
resource provisioning in Deviceless Edge Computing, as it is the cornerstone
for resource pooling and rapid elasticity at the Edge. Moreover, provisioning
component (middleware) is a crucial enabler for deviceless paradigm, because it
decouples the developers and their applications from the underlying devices. In the
following, we discuss our deviceless provisioning model and the middleware.

5.1 Software-Defined Gateways

Software-defined gateways (SDGs) are the core abstraction in deviceless provision-
ing model. Their main purpose is to support virtualizing Edge compute resources,
for example, IoT devices, in order to provide isolated and managed execution
environments for deviceless functions.

To achieve this, SDGs encapsulate functional aspects (e.g., communication
capabilities or sensor poll frequencies) and non-functional aspects (e.g., quality
attributes, elasticity capabilities, costs, and ownership information) of the Edge
resources and expose them to the deviceless platform (provisioning middleware).

132 S. Nastic and S. Dustdar

The functional, provisioning, and governance capabilities of the units are exposed
via well-defined APIs, which enable provisioning and controlling the SDGs at
runtime, for example, start/stop. Our conceptual model also allows for composing
and interconnecting SDGs, in order to dynamically deliver the Edge resources
and capabilities to the applications. The runtime provisioning and configuration is
performed by specifying late-bound policies and configuration models. Naturally,
the SDGs support mechanisms to map the virtual resources with the underlying
physical infrastructure. However, this is out of the scope of this chapter. Finally,
some of the most important features of SDGs include:

• They provide software-defined API, which can be used to access, configure, and
control the units, in a unified manner.

• They support fine-grained internal configurations, for example, adding functional
capabilities like different communication protocols, at runtime.

• They can be composed at higher level, via dependency units, creating virtual
topologies that can be (re)configured at runtime.

• They enable decoupled and managed configuration (via late-bound policies) to
provision the units dynamically and on-demand.

• They have utility cost functions that enable pricing the Edge resources as utilities.

Figure 5 gives the architectural view of SDGs and depicts the most important
components of software-defined gateways. In the figure, the double line shows
virtual boundaries of the SDG prototypes. Our provisioning model does not require
building custom SDGs from scratch. Instead, it provides SDG prototypes and
defines mechanisms (implemented by the middleware) to customize them, based
on application-specific requirements. At their core, the SDG prototypes define an
isolated runtime environment for the SDGs and application-specific components.
The main purpose of the SDG prototypes is to provide isolated namespaces, as well
as limit and isolate resource usage, such as CPU and memory. Therefore, the SDG

Fig. 5 Software-defined
gateway (SDG) architecture Software‐Defined Gateway

Deviceless function

Deviceless function

Configuration
Container

Device Connectivity

Virtual Buffers Deamon

Provisioning Agent

SD
G

 Profiler

Cloud Connectivity

Edge D
evice

Device Drivers and Protocols

...

Towards Deviceless Edge Computing 133

prototypes are used to bootstrap higher-level SDG functionality. It is important to
mention that SDG prototypes do not propose a novel virtualization solution. Instead,
they rely on proven techniques, namely, kernel-supported virtualization approaches,
which offer a number of lightweight execution environments/drivers such as LXCs,
libvirt-sandbox, or even chroot. Such environments are generally referred to as
containers that can be used to “wrap” the SDGs. Conceptually, virtualization choices
do not pose any limitations, because by utilizing well-defined APIs, our SDGs can
be dynamically configured, provisioned, interconnected, and deployed, at runtime.
The SDG prototypes are hosted in the IoT Cloud and enriched with functional and
provisioning capabilities, which are exposed via the well-defined APIs. There are a
number of components (cf. Fig. 5) which are preinstalled in each SDG prototype in
order to support such APIs.

5.2 Deviceless Provisioning Middleware

Figure 6 gives a high-level architecture overview of our middleware. Generally,
the provisioning middleware is designed based on the microservices architecture
and it is distributed across the Cloud and Edge devices. The main components

Fig. 6 Architecture overview
of the deviceless provisioning
middleware

Multi‐level Provisioning API

APIManager

Provisioning Controller

M
onitoringAgent

MonitoringCoordinator

Im
ageBuilder

D
ependency

M
anagem

ent

DeploymentHandler

SDGManager ArtifactsManager

Repositories

SDG Prototypes

Configuration
Models

Software Artifacts

Edge D
evice

Software‐Defined
Gateway

Device Drivers and Protocols

Virtual Buffers Deamon

Provisioning Deamon

134 S. Nastic and S. Dustdar

of the provisioning middleware include (1) the Software-Defined Gateways, (2)
the Provisioning and Virtual Buffers Daemons that run in Edge devices, and (3)
the Provisioning Controller which runs in the Cloud. Previously, we have briefly
discussed the SDGs; in the remainder of this section, we mainly focus on describing
the Provisioning Controller component and point an interested reader to our earlier
publication [13], where we discuss the Provisioning and Virtual Buffers Daemons
in great detail.

The Provisioning Controller (Fig. 6, top) provides a mediation layer that
enables the Deviceless Edge Platform to interact with the Edge infrastructure in a
conceptually centralized fashion, without worrying about geographical distribution
and heterogeneity of the underlying Edge devices. Internally, the Provisioning
Controller comprises several microservices: APIManager, MonitoringCoordinator,
SDG- and ArtifactsManager, DeploymentHandler, and DependencyManagement
service. These microservices are self-contained units, which communicate over
REST APIs and can be individually deployed. This enables our Provisioning
Controller to support elastically scalable execution of provisioningworkflows, since
we can dynamically spin up additional instances of microservices under heavy load
and scale out the Provisioning Controller to support a large number of connected
Edge devices. Due to space limitations, in continuation, we only describe the most
important microservices of the Provisioning Controller.

The main responsibility of the APIManager is to manage the Multilevel Pro-
visioning API, that is, it encapsulates the middleware provisioning capabilities
in well-defined APIs and handles all API calls from user-defined provisioning
workflows. Although our middleware provides multilevel provisioning support,
this distinction is only relevant to the middleware internal components, since
the APIManager hides all such details from the users, who effectively observe
only simple API calls and corresponding responses. Therefore, the APIManager
is responsible to resolve incoming requests, map them to the respective handlers,
that is, SDGManager or ArtifactsManager (depending on the request type), and
deliver results to the calling workflow. Among other things, the actions performed
by these managers involve selecting requested SDGs or artifacts by querying the
corresponding SDG- and Artifacts-Repository, building the package images, and
delivering them to the Edge devices. All device state-snapshots are maintained by
the MonitoringCoordinator, which manages static device meta-information and
periodically sends monitoring request to the MonitoringAgent in order to obtain
runtime snapshots of current device state. Finally, since the user-defined functions
and SDG images are not readily available in Edge devices, the DeploymentHandler
is responsible to deliver them to the Edge devices (i.e., Provisioning Daemons)
or SDGs (i.e., Provisioning Agents) at runtime. The DeploymentHandler relies
on the DependencyManagement service to resolve the required dependencies and
ImageBuilder to prepare (package and compress) them into deployable images.
Resolving the dependencies on the cloud is particularly useful, because it saves
a lot of processing and networking, from the perspective of whole infrastructure,
since otherwise each Edge device would have to perform the same set of actions,
for example, downloads.

Towards Deviceless Edge Computing 135

6 Conclusion

The chapter introduced a novel vision of the Deviceless Edge Computing paradigm.
In order to clarify some of the most important aspects of this emerging paradigm,
we have analyzed the key challenges associated with Deviceless Edge Computing
and presented a generic reference architecture of a Deviceless Platform. Moreover,
we have presented Intent-based programming model and an approach for automated
provisioning of the Edge infrastructure, based on Software-Defined Gateways. We
discussed how these two approaches facilitate two main challenges: deviceless
application development and automated provisioning and management at scale,
respectively.

As we have discussed, the presented approaches significantly reduce the com-
plexity related to development and runtimemanagement (e.g., provisioning, deploy-
ment, and configuration management) of deviceless applications. However, there is
still a long road ahead to fully realize the vision of the Deviceless Edge Computing.
In the future, we plan to continue our line of research, by focusing on addressing
the most important research challenges such as (1) enabling resource pooling and
rapid elasticity, at the Edge, (2) scheduling deviceless functions execution on loosely
coupled and scarce Edge resources, and (3) addressing the key governance and
security issues related with deviceless applications. To this end, we plan to focus on
“filling the gaps” in the proposed reference architecture, by developing the required
models and platform mechanism.

Acknowledgment This work is sponsored by Joint Programming Initiative Urban Europe, ERA-
NET, SMART-FI project under project No. 6683255.

References

1. Amazon: Amazon Web Services IoT. https://aws.amazon.com/iot/. Accessed June 2016
2. Sundar Pichai (Google Official Blog): Building the next evolution of Google. https://

googleblog.blogspot.co.at/2016/05/io-building-next-evolution-of-google.html. Accessed June
2016

3. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in
mobile computing. Pervasive Comput. 8(4), 14–23 (2009)

4. Bahl, V.: Cloud 2020: emergence of micro data centers (cloudlets) for latency sensitive
computing (keynote). In: Middleware 2015 (2015)

5. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra, R., Bahl,
P.: Maui: making smartphones last longer with code offload. In: Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services, pp. 49–62. ACM,
New York (2010)

6. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between
mobile device and cloud. In: Conference on Computer Systems. ACM, New York (2011)

7. Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T.J., Gu, X.: Towards
a distributed platform for resource-constrained devices. In: Proceedings 22nd International
Conference on Distributed Computing Systems, 2002, pp. 43–51. IEEE, New York (2002)

https://aws.amazon.com/iot/
https://googleblog.blogspot.co.at/2016/05/io-building-next-evolution-of-google.html
https://googleblog.blogspot.co.at/2016/05/io-building-next-evolution-of-google.html

136 S. Nastic and S. Dustdar

8. Stuedi, P., Mohomed, I., Terry, D.: Wherestore: location-based data storage for mobile devices
interacting with the cloud. In: MCS (2010)

9. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation as a service: a new development
for clouds. In: NCA, pp. 272–275 (2012)

10. Nastic, S., Sehic, S., Voegler, M., Truong, H.-L., Dustdar, S.: Patricia - a novel programing
model for iot applications on cloud platforms. In: SOCA (2013)

11. Glikson, A., Nastic, S., Dustdar, S.: Deviceless edge computing: extending serverless comput-
ing to the edge of the network (2017)

12. Breitgand, D., Glikson, A., et al.: Sla-aware resource over-commit in an IaaS cloud. In:
CNSM’12

13. Nastic, S., et al.: A middleware infrastructure for utility-based provisioning of IoT cloud
systems. In: The First IEEE/ACM Symposium on Edge Computing (2016)

14. Yuriyama, M., Kushida, T.: Sensor-cloud infrastructure-physical sensor management with
virtualized sensors on cloud computing. In: NBiS (2010)

15. Soldatos, J., Serrano, M., Hauswirth, M.: Convergence of utility computing with the internet-
of-things. In: IMIS, pp. 874–879 (2012)

16. Hassan, M.M., Song, B., Huh, E.-N.: A framework of sensor-cloud integration opportunities
and challenges. In: ICUIMC (2009)

17. Nastic, S., Truong, H.-L., Dustdar, S.: SDG-Pro: a programming framework for software-
defined IoT cloud gateways. J. Internet Serv. Appl. 6(1), 1–17 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

	Towards Deviceless Edge Computing: Challenges, Design Aspects, and Models for Serverless Paradigm at the Edge
	1 Introduction
	2 Related Work
	3 Deviceless Edge Platform
	3.1 Approach
	3.2 Platform Usage and Architecture Overview

	4 Programming Support for Deviceless Edge Computing
	4.1 Programming Support for Deviceless Edge Functions
	4.2 Intents and IntentScopes
	4.3 Data and Control Points

	5 Provisioning Support for Deviceless Edge Computing
	5.1 Software-Defined Gateways
	5.2 Deviceless Provisioning Middleware

	6 Conclusion
	References

