
Polaris Scheduler: Edge Sensitive and SLO Aware
Workload Scheduling in Cloud-Edge-IoT Clusters

Stefan Nastic
Reinvent Labs GmbH

Vienna, Austria

snastic@reinvent-group.at

Thomas Pusztai
Andrea Morichetta

Vı́ctor Casamayor Pujol
Schahram Dustdar

Distributed Systems Group, TU Wien
Vienna, Austria

lastname@dsg.tuwien.ac.at

Deepak Vij
Ying Xiong

Futurewei Technologies, Inc.
Santa Clara, CA, USA

firstname.lastname@futurewei.com

Abstract—Application workload scheduling in hybrid Cloud-
Edge-IoT infrastructures has been extensively researched over
the last years. The recent trend of containerizing application
workloads, both in the cloud and on the edge, has further fueled
the need for more advanced scheduling solutions in these hybrid
infrastructures. Unfortunately, most of the current approaches
are not fully sensitive to the edge properties and also lack
adequate support for Service Level Objective (SLO) awareness.
Previously, we introduced software defined gateways (SDGs),
which enable managing novel edge resources at scale. At the
same time Kubernetes was initially released. In spite of not
being specifically developed for the edge, Kubernetes implements
many of the design principles introduced by our SDGs, making it
suitable for building SDG extensions on top of it. In this paper we
present Polaris Scheduler – a novel scheduling framework, which
enables edge sensitive and SLO aware scheduling in the Cloud-
Edge-IoT Continuum. Polaris Scheduler is being developed as a
part of Linux Foundation’s Centaurus project. We discuss the
main research challenges, the approach, and the vision of SLO
aware edge sensitive scheduling.

Index Terms—Edge Computing, Service Level Objectives, Elas-
ticity, Container Scheduling

I. INTRODUCTION

The next generation clouds are already expanding beyond

traditional data centers into the far edges of the network. This

is completely transforming how we perceive the notion of

computing infrastructures and other digital resources such as

storage and network. Additionally, novel types of resources,

e.g., Edge-based gateways are becoming an integral part of

this novel computational fabric. We are witnessing a paradigm

shift, in which digital resources are becoming truly ubiquitous

and first-class citizens available across the entire Cloud-Edge-

IoT (CEI) continuum. This requires us to rethink how we

perform scheduling and placement of novel cloud- and edge-

native workloads.

As the CEI systems become more complex and more

dependent on third-party services, Service Level Objectives

(SLOs) become increasingly important. Typically, SLOs define

specific and measurable capacity guarantees of a workload,

e.g., available memory to a provisioned VM. Next generation

This work is supported by Futurewei’s Cloud Lab. as part of the overall
open source initiative.

SLOs aim to go a step further and provide guarantees about

workload’s performance, which is easier to understand, com-

municate and generally more relevant [1], [2]. Unfortunately,

for application workloads, which run in edge environments,

traditional SLO enforcement and violation mitigation mecha-

nisms, such as elastic scaling are not easily attainable as they

are for more traditional cloud-native workloads. Therefore, for

such edge-native workloads it is important to address SLOs

as early as possible in their orchestration and management

lifecycle. Typically, this means considering SLO constraints

and requirements already in the CI/CD pipeline, i.e., during

the deployment phase.

Since its inception in 20141, Kubernetes has put itself

forward as a de facto standard for orchestrating and managing

containerized workloads (pods) in the cloud. While Kube

scheduler and other Kubernetes-based schedulers are well

optimized for the cloud environment, where compute nodes

are powerful and network connections have consistently high

throughput, they largely lack features, which are needed for

scheduling containers in edge environments. Recently, various

solutions have been emerging to offer Kubernetes distributions,

which are specifically tailored for the edge. Examples include

KubeEdge2 [3], MicroK8S3 and K3S4. Unfortunately, such and

similar solutions largely lack adequate support for considering

SLOs for workload scheduling at the edge.

In our previous work we introduced software defined gate-

ways (SDGs) [4], [5] which enable abstracting and managing

novel edge resources at scale. At the same time Kubernetes

was initially released. In spite not being specifically developed

for the edge, Kubernetes implements many of the design

principles introduced by our SDGs. This and its inherent

extensibility makes it a perfect candidate for building SDG

extensions on top of it.

In this paper, we present a novel Polaris Scheduler. It is

being developed as a part of Linux Foundation’s Centaurus

1https://github.com/kubernetes/kubernetes/commit/
2c4b3a562ce34cddc3f8218a2c4d11c7310e6d56

2https://kubeedge.io/
3https://microk8s.io
4https://k3s.io

206

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00034

project5 and it builds on our SDGs to enrich them with

SLO awareness for the edge-native scheduling. In particular,

we discuss the main research challenges to achieve optimal

scheduling in the novel Cloud-Edge-IoT continuum, vision and

approach to the SLO aware edge scheduling.

The remainder of this paper is structured as follows: Sec-

tion II provides further motivation for our work, by discussing

the main research challenges. It also provides an overview

of our background work in this area. Section III presents the

main approach and the architecture of our Polaris Scheduler. In

Section IV, we introduce our SLO-aware scheduling pipeline

and describe main Polaris Scheduler extension plugins. In

Section V we discuss the related approaches, which are

most relevant to Polaris Scheduler. Finally in Section VI we

conclude our paper and provide a future outlook.

II. MOTIVATION AND BACKGROUND

In scope of our work on Linux Foundation’s Centaurus

project, we identified several research challenges, which are

critical missing pieces for enabling effective and efficient

workload scheduling. To further motivate our work, subse-

quently we discuss the most important research challenges

of workload scheduling and placement in the Cloud-Edge-

IoT continuum. After that we provide an overview of our

main projects, which conceptually and practically underpin

this work.

A. Research Challenges

Our approach aims to address main research challenges,

which include:

RC-1 Scheduling based on dynamically changing data: Most

of contemporary schedulers work based on apriori static

or only limited dynamic information, such as availability

of (physical) nodes, network topology, and so forth. To be

able to deal with the high dynamicity in Cloud-Edge-IoT

continuum an access to fine-grained, real-time monitoring

information is required during scheduling. Such informa-

tion can be used to continuously update the information

on the state of the underlying infrastructure.

RC-2 User input aware scheduling process: Scheduling is

usually performed on a fixed set of attributes, with little

support for user inputs. This is particularly important

for workloads, which are associated with SLOs, as it is

inefficient and costly to do scheduling without consider-

ing user-provided SLOs. For example, this can lead to

early SLO violations, immediate after scheduling, which

would then trigger mitigation actions, effectively forcing

a rescheduling of the workload.

RC-3 Considering workload’s dependencies and internal
structure: Most of the schedulers view a workload as a

black box, meaning that they do not consider any infor-

mation pertaining to workload’s internal structure. This

has an obvious disadvantage that the scheduling cannot

be optimized for particular properties of a workload, such

5https://www.centauruscloud.io

as that Service A needs to communicate with Service B.

This type of QoS data, which is internal to the workload,

holds valuable information that can be useful in preventing

premature SLO violations. Finally, being able to guarantee

all dependencies, e.g., a virtual sensor is attached to a

node, are satisfied before starting a workload on the node

ensures correct readiness behaviour.

RC-4 Hybrid infrastructure placement and scheduling: Usu-

ally the Cloud-Edge-IoT infrastructure is not flat. Instead,

it is mainly organized ad hoc, usually in a hierarchical

manner. For example, it is a common case to have a

so called gateway node, which manages a portion of

the edge network and mediates its communication with

the cloud. This means that the scheduler might not have

“direct access” to all the nodes in the logical Cloud-

Edge-IoT cluster. This obviously poses a big issue for the

traditional schedulers and placement approaches, which

assume having complete information about the cluster’s

nodes, network topology and auxiliary (virtual) devices.

RC-5 Scheduler scalability: Scheduling resources on top of

a very large, hyper distributed infrastructure can be very

costly in terms of determining suitable nodes based on

workload’s scheduling score and constraints. This is an

issue for optimization heuristics that rely on static data

to select nodes, but more so for the approaches, such

as ours, which also consider and account for dynamic

infrastructure changes.

RC-6 Opportunistic resource exploitation: Opportunistic

scheduling on mobile and constrained devices is another

challenge, which is caused by a highly dynamic nature of

edge infrastructures. This means that and Cloud-Edge-IoT

scheduler not only needs to account for the dynamically

changing state of the edge (see RC-1), but also for dra-

matic changes to the infrastructure itself, such as devices

coming and going, dynamic network changes, e.g., due to

cellular tower handovers, and so forth.

RC-7 Considering edge-specific locality properties: Gener-

ally, the main goal of any scheduling approach is to find an

optimal utilization of available resources, while satisfying

certain constraints. Contrary to the traditional systems, we

are usually required to make different decisions and effi-

cient trade-offs regarding data and computation movement

at the edge. Some of the edge-specific locality constraints,

which are important to consider for optimal scheduling

include: locality of data storage nodes, proximity of the

container registry, and locality in the Cloud-Edge-IoT

compute continuum, e.g., cloud-nodes vs. edge-edge).

RC-8 Embedding intelligence in the scheduler: Optimal work-

load scheduling is one of the main tasks for efficient

operations of edge-native applications and jobs. As the

intelligence permeates through the edge, applications are

significantly benefiting. Additionally, such edge intelli-

gence will play an important role to realizing next gen-

eration operations, management and orchestration. One of

the key challenges to realize this AI-driven EdgeOps is

more intelligent scheduling and placement of workloads

207

across the Cloud-Edge-IoT continuum.

RC-9 Energy aware scheduling: Both in the cloud data centers

and for the edge devices, energy consumption plays a very

important role. Power consumption of the Cloud-Edge-

IoT infrastructure and the scheduled workloads has broad

implications. They span from environmental impacts of

power sources to actual functional limitations of specific

devices. Therefore, a scheduling algorithm needs to con-

sider a cost model, which can optimize resource utiliza-

tion, but at the same time minimize the overall energy

consumption of the entire Cloud-Edge-IoT infrastructure.

Finally, when considering power needs when scheduling

a workload, it is also important to factor in unreliable and

dirty power sources, as well as the fact that some edge

devices are not always on.

B. Background

The Polaris Scheduler builds on amalgamation of a number

of our previous and ongoing projects and collaborations. Next,

we summarize the work most pertinent to Polaris Scheduler.

1) Project Centaurus: Centaurus is a Linux Foundation

project, which provides a cloud infrastructure platform, which

can be used to build public or private clouds. Centaurus unifies

the orchestration, network provisioning and management of

cloud compute and network resources at regional scale. Polaris

Scheduler utilizes several subprojects (SIGs) of Centaurus

Project. These include: Arktos [6] and Polaris SLO Cloud6 [2].

The Polaris SLO Cloud project [2], [7] is part of Centaurus

and aims to make complex SLOs first class citizens in Cloud

Computing. It features high-level abstractions and a framework

for defining and implementing complex metrics that aggregate

lower-level metrics, complex SLOs that operate based on these

metrics, and elasticity strategies that reach beyond simple

horizontal or vertical scaling.

Arktos is designed as a multi-tenant and large scale cloud

platform evolved from Kubernetes [8] to schedule, provision,

and manage resources for VM, Container, and Serverless

functions. Specifically, the vision of Arktos is to 1) manage

a very large compute cluster, in the order of 100K compute

nodes, this allows us to have the scale to experiment various

scheduling algorithms for increasing resource utilization for

cloud providers; 2) unify the technology stack to manage

various resource types such as bare metal servers, virtual ma-

chines, and lightweight containers, which allows the platform

to manage resources more efficiently at different granularity

level, thus achieving the true elasticity of the platform; 3)

provide true multi-tenant computing environment with strong

isolation so that resources can be shared without impacting

other tenants. This further improves resource utilization by

using techniques such as resource reclamation among tenants.

2) Software Defined Gateways: Software defined gate-

ways [4] encapsulate the cloud and edge resources and abstract

their provisioning and governance. Their main purpose is

to support virtualizing compute resources in Cloud-Edge-IoT

6https://polaris-slo-cloud.github.io

continuum. Their main aim is to provide managed execution

environments for application workloads, which can be easily

orchestrated.

To achieve this, SDGs encapsulate functional aspects (e.g.,

communication capabilities or sensor poll frequencies) and

non-functional aspects (e.g., quality attributes, elasticity ca-

pabilities, costs and ownership information) of the Edge

resources and expose them to the SDG provisioning mid-

dleware [5]. The functional, provisioning and governance

capabilities of the units are exposed via well-defined APIs,

which support provisioning and controlling the SDGs at run-

time. Our conceptual model also allows for composing and

interconnecting SDGs, in order to dynamically orchestrate and

deliver the Cloud-Edge-IoT resources.

The Polaris Scheduler builds on these concepts. It also

adopts the notion of a provisioning daemon and gateway

profiler from SDG provisioning middleware.
3) Project KubeEdge: KubeEdge [3] is an open source

system for extending native containerized application orches-

tration capabilities to hosts at Edge. It is built on top of

Kubernetes and it provides fundamental infrastructure support

for network, application deployment and metadata synchro-

nization between cloud and edge.

KubeEdge architecture includes a network protocol stack

called KubeBus, a distributed metadata store and synchroniza-

tion service, and a lightweight agent (EdgeCore) for the edge.

KubeBus is designed to have its own implementation of OSI

network protocol layers, which connects nodes at edge and in

the cloud as one virtual network. KubeBus provides a unified

multitenant communication infrastructure with fault tolerance

and high availability. The distributed metadata store and sync

service is designed to support the offline scenario when edge

nodes are not connected to the cloud. EdgeController manages

remote edge and cloud nodes as one logical cluster, which

enables KubeEdge to schedule, deploy and manage container

applications across edge and cloud with the same API.

The Polaris Scheduler builds on top of KubeEdge and aims

to enhance it with a novel approach to workload scheduling

in Cloud-Edge-IoT continuum, which is sensitive to the edge

properties and also SLO aware.

III. POLARIS SCHEDULER APPROACH

A. Main Concepts and Objectives

The main aim of our Polaris Scheduler is to facilitate

SLO-aware scheduling of workloads in hybrid Cloud-Edge-

IoT continuum clusters. This entails reaching the following

objectives:

1) Polaris Scheduler Framework aims to enable capturing
intrinsic interdependencies among a workload’s services,

in order to enable users to specify their QoS and SLOs

constraints and requirements. This objective addresses:

RC-2 and RC-3.

2) With Polaris Scheduler we aim to support continuous
monitoring of the physical infrastructure nodes and dy-
namic cluster properties. This information needs to be

constantly fed to the scheduler in order to support the

208

 Polaris Scheduler Edge-native components Polaris Scheduler Cloud-native components

Persistence Layer

Cluster Monitoring
Data Store

Service Graph Store

 Cluster Node

Polaris
Daemon

Pod Pod Pod

Node
Profiler

Cluster Node
Cluster Node

Cluster Node
Cluster Node

Network Topology
Metadata Store

etcd
Cluster Manager

Launch Configuration Provider

Cluster Monitoring
Service

Plugins

ClusterTopologyGraph
Controller

ClusterTopologyGraph
Management UI

 API Server

Scheduling Pipeline

Weights Extenders

...

ServiceGraph
Controller

Polaris Scheduler Extension Plugins

Fig. 1: Polaris Scheduler Architecture Overview.

main scheduling process. This objective addresses RC-1

and RC-6.

3) Polaris Scheduler provides a structured approach to deal-
ing with infrastructure properties, inherent to the Cloud-
Edge-IoT continuum. To this end, it aims to provide a

comprehensive set of extensions (plugins), which can

capture and interpret edge-specific properties, reflecting

them in the main scheduling process. This objective

addresses: RC7 and RC9.

4) We take a pragmatic approach with Polaris Scheduler and

go beyond proposing a new algorithm and heuristics to

provide a complete framework that can be used in any
Cloud-Edge-IoT cluster, which is based on Kubernetes or

any of its distributions. Our framework is rooted in main

cloud- and edge-native principles such as hierarchical

decomposition, horizontal scalability and high degree of

automation. This objective addresses RC-4, RC-5 and

RC-8.

To achieve these objectives Polaris Scheduler defines and

implements the following main concepts:

• A Service Graph, which models workload’s components

and their interactions. It provides enough metadata about

the workload to the scheduling pipeline to make it possi-

ble to optimally schedule the workload at the edge. This

achieves Objective 1.

• A Cluster Topology Graph, which maintains the cluster-

and infrastructure-specific states in order to make the

scheduling pipeline edge sensitive and SLO aware. To

keep these states up to date, in face of highly dy-

namic Cloud-Edge-IoT continuum, Polaris Scheduler im-

plements an Infrastructure Monitoring Service that works

in cooperation with Polaris Daemon and Node Profiler.

This achieves Objective 2.

• Edge aware and SLO aware extension plugins which are

responsible to implement edge- and SLO-awareness in

the scheduling pipeline. For example, Polaris Scheduler

has specific plugins, which support reasoning about the

locality and proximity properties. This achieves Objec-

tive 3.

• Polaris scheduler is distributed across the cloud and the

edge. Its control plain is inherently cloud-native and

highly scalable. Additionally, it contains a set of agents

and profilers, which run inside the nodes. This achieves

Objective 4.

In the continuation, we provide an architecture overview of

our Polaris Scheduler.

B. Architecture Overview

Figure 1 shows a high-level view of the framework architec-

ture. The architecture is organized in two main parts. The main

layers and components of the first, cloud-native part are shown

on the left-hand side of the figure. The cloud-native portion

of Polaris Scheduler can be seen as its control plain and it is

intended to fully run in the cloud. Similarly, the right-hand side

of Figure 1 shows the edge-native portion of our framework.

It includes pods/containers (application workload), but also

services, daemons and agents, which execute on each node

in the cluster. It is important to note that these components

need to be optimized for the edge, but they can, naturally, run

in the cloud as well, i.e., across the entire Cloud-Edge-IoT

continuum.

Polaris Scheduler is built on top of KubeEdge, which is

a Kubernetes distribution specially designed for the edge7.

Figure1 clearly illustrates the components developed by Po-

laris Scheduler (marked as purple boxes) and the components

which are adopted from KubeEdge/Kubernetes (indicated as

gray boxes with blue pictograms). The main components

comprising Polaris Scheduler are: 1) Scheduling Pipeline,
2) Persistence Layer, 3) Cluster Topology Graph Controller,
4) Cluster Manager, 5) Service Graph Controller, 6) In-
frastructure Monitoring Service, 7) API Server, 8) Launch
Configuration Provider, 9) PolarisDaemon, 10) NodeProfiler,
11) Kubelet and 12) Network Proxy.

The Scheduling Pipeline is the core part of our Polaris

Scheduler. It implements the scheduling algorithm and defines

a set of extension plugins. The Polaris Scheduler provides

7When referring to the components common to both orchestrators, we use
Kubernetes and KubeEdge interchangeably.

209

these plugins to customize the scheduling pipeline workflow,

in order to make it SLO aware and sensitive to the infrastruc-

ture properties that are specific to the edge, such as locality,

device mobility and so forth. To achieve this, the Polaris

Plugins tap into the metadata, which is specifically provided by

custom Polaris components. Additionally, the plugins maintain

their own configuration models, which capture information

pertinent to the workload, cluster and SLOs. We discuss the

Scheduling Pipeline in more detail in Section IV.

The Persistence Layer of Polaris Scheduler is responsible

for storing all shared state and metadata, which is used

during the main scheduling process. In addition to the Etcd

cluster, which is the default key-value store used in most

Kubernetes distributions, Polaris Scheduler uses three addi-

tional data stores. They are used to persist infrastructure

models (Cluster Topology Graph Store), main dependencies

among workload’s services (Service Graph Store), real time

monitoring information (Cluster Monitoring Data Store). We

discuss this and the corresponding controllers and services in

more detail subsequently.

The API Server is a component of the Kubernetes control

plain that exposes the Kubernetes API. The API server is the

front end for the Kubernetes control plain. Polaris Scheduler

adopts the Kubernetes API server, which can be used to

submit a workload for scheduling. Additionally, the API Server

is used as the central gateway that facilitates access to the

cluster’s shared state (Persistence Layer) through which all

other components interact.

The Cluster Monitoring Service in coordination with the

Node Profiler (which runs on each cluster node) executes a

sequence of runtime profiling actions to complete the dy-

namic node profile. For example, the profiling actions include:

currently available RAM, firewall settings, environment infor-

mation, list of processes and daemons, and list of currently

running pods. As soon as the latest version of the node

profile snapshot is complete, it is communicated back to the

Cluster Monitoring Service. The monitoring service stores the

snapshots in the Cluster Monitoring Data Store. This data is

then used during the main scheduling process to determine if

a workload can be scheduled on a specific node and to check

the SLOs.

The Cluster Manager is responsible for managing all the

cluster resource for Polaris Scheduler. This involves providing

information about the available resources, such as persistent

volume claims, but also updates about the changes in the

infrastructure, such as to its network connections. The former

can be easily obtained from Kubernetes API Server, via

its List and Watch APIs8. The later is more complex and

requires a custom solution. For this reason Cluster Manager

works together with the API Server and Cluster Topology

Graph controller. The Cluster Topology Graph controller is

our custom Kubernetes controller, which is responsible for

managing Cluster Topology Graph Custom Resource Defini-

tion (CRD). The details of the CRD are presented in a later

8https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/

section. At the moment, it is important to note that, since

the Cluster Topology Graph is implemented as a Kubernetes

CRD it can be updated through the Kubernetes API. This is a

nice side effect, which enables the Cluster Manager to hook

into the Cluster Monitoring Service, receive updates about

the infrastructure changes and consequently update the store

metadata, which is used during workload scheduling. Finally,

the Cluster Topology Graph can be manually specified or

updated through the Cluster Topology Graph Management UI.

For example, a field engineer can use the management UI to

configure the node topology when bootstrapping the physical

infrastructure or to update it at a later stage.

The Service Graph Controller is another custom Kubernetes

controller, which is responsible for managing the Service

Graph CRD. The Service Graph Controller enables attaching

a custom service dependency graph to a workload. This

service graph is used to enable users to attach custom SLO

mappings [1] to their workloads. This effectively enables

users to associate specific Quality of Service (QoS) and SLO

constraints and requirements on a sub-workload granularity,

e.g., for a communication bus connecting two services. More

details on Service Graph CRD are presented later in the paper.

The Launch Configuration Provider is inherited from Ku-

bernetes. The scheduler policy can be configured to specify

which weights, extenders, and plugins are used in the main

scheduling process. The latter play a very important role

for Polaris Scheduler, as it uses a set of custom plugins to

enrich the main scheduling process with SLO-aware consider-

ations (cf. Section IV). Therefore, this enables specifying per-

cluster scheduling configuration models. Currently, the launch

configuration of the scheduler policy supports three formats:

configuration file, command-line parameter, and ConfigMap.

The Polaris Daemon is responsible to make the Polaris

Scheduler aware of the edge-specific properties. The Kubelet

is the primary node agent that runs on each node in the

cluster. Polaris Daemon is the edge-native node agent, which

runs alongside Kubelet. The Polaris Daemon extends our SDG

daemon to collect edge-specific metadata about the node, its

compute capabilities, networking, auxiliary hardware (e.g.,

accelerators, sensors, etc.) and other node capabilities [5],

[9], [10]. This is done by periodically probing the edge

node and communicating this information back to the Polaris

Scheduler cloud-based control plain. More specifically, the

Cluster Topology Graph Controller processes this metadata

and makes it readily available to the Scheduling Pipeline.

C. Cluster Topology Graph

Typically in cloud-only Kubernetes clusters, the node and

network topology is very uniform, thus the Kubernetes sched-

uler has no notion of such a topology and assumes it is

completely flat. While this makes sense in such environments,

it is not sufficient to capture complex relationships among the

constituents of the Cloud-Edge-IoT continuum. For example,

at the edge it is very common to have the infrastructure

hierarchically organized, typically containing many gateway

edge devices. Such gateways can manage hundreds of IoT

210

devices or even integrate entire subsystems, such as factory

floors.

To make the scheduling workflow edge sensitive and SLO
aware, the Polaris Scheduler needs an explicit representation

of the cluster node (physical) topology and the network QoS

parameters for the links between the nodes. To this end, we

created a cluster topology abstraction that can be configured to

represent the topology of the cluster. For example, this can be

done by a field engineer through the Cluster Topology Graph

Management UI (cf. Figure 1). The Infrastructure Monitoring

Service and Polaris Daemon continuously monitor the state

of the underlying infrastructure and reflect its changes in the

Cluster Topology Graph CRD. This metadata is then used by

the scheduling pipeline plugins.

The Cluster Topology Graph models the topology of the

cluster, i.e, it describes the infrastructure model. Its links

record the network QoS parameters of the corresponding net-

work connections. This graph is critical for the NetworkType

and NetworkQoS plugins (discussed in Section IV). While the

former only needs to check single network links, the latter has

to be able to compute the shortest path between any two nodes

of the cluster, which is why a graph representation is required.

+nodeA : string
+nodeB : string

NetworkLink

+qualityClass : NetworkQualityClass

NetworkLinkQoS

QC1Mbps
QC10Mbps
QC1Gbps
...

<<enumeration>>
NetworkQualityClass

+bandwidthKbps : int
+bandwidthVariance : int

NetworkThroughput

+packetDelayMsec : int
+packetDelayVariance : int

NetworkLatency

+packetLossBp : int

NetworkPacketLoss

throughput latency

packetLoss

Fig. 2: Cluster Topology Graph formal model (NetworkLink partial view).

Since Kubernetes offers no solution for directly storing a

graph resource, each link in the topology is stored as a separate

NetworkLink CRD instance, whose UML class diagram is

shown in Figure 2. The network topology graph itself is

constructed by the Polaris Scheduler at runtime, based on

these network links. This approach also facilitates updates of

the cluster’s network topology, because a change in a single

network connection, requires updating only one NetworkLink

resource, as opposed to updating a large graph resource.

D. Service Graph

In the Cloud-Edge-IoT continuum, application workloads

typically execute across network boundaries and on a very

heterogeneous devices and nodes. To account for such vari-

ability Polaris Scheduler introduces Service Graph CRD. The

Service Graph is crucial piece which provides enough meta-

data about the workload to the scheduling pipeline plugins to

make scheduling the workload possible. It also captures the

necessary information to make the scheduling SLO-aware.

The service graph abstraction used in Polaris Scheduler

models workload’s components and how they interact with

each other. Each node in the service graph represents an

application component that can be deployed as a set of pods

(a service node should not be confused Kubernetes Service),

while each directed link between two component indicates that

there is a communication link between the two nodes. Each

service graph link can be annotated with the network QoS

requirements, i.e., SLOs, for the connection between the nodes

it connects. Additionally, the service graph enables specifying

comprehensive SLO constraints and requirements making the

Polaris Scheduler fully aware of workload’s SLOs.

ServiceNode

+id : string

ServiceLink

ServiceLevelObjective

ServiceGraphNode

+targetNodeId : string

LinkQosRequirements

+protocol : string
+minQualityClass : QualityCl...

LinkType

LinkTrustRequirements

+minBandwidthKbps : int
+maxBandwidthVariance::int

NetworkThroughputRequirements

+maxPacketDelayMsec : int
+maxPacketDelayVariance : int

NetworkLatencyRequirements

+maxPacketLossBp : int

NetworkPacketLossRequirements

target

linkTrustRequirements 0..1

0..1

0..1

linkQosRequirements 0..1

0..*

linkType 0..1

source 0..1

0..1

Fig. 3: Service Graph formal model (Service Link partial view).

For example, the service graph can be used for defining

SLO constraints on the network links. Each service graph node

will have an ID that can be referenced by a Kubernetes-native

deployment to allow the scheduler to find the appropriate

service graph node and constraints during scheduling (similar

to how a Persistent Volume Claim can be referenced by a Pod).

This assumes that the service graph is submitted to the cluster

before any of the deployments. FInally, usage of the service

graph is optional, i.e., deployments that do not reference a

service graph are scheduled without SLO optimizations.

IV. EDGE SENSITIVE AND SLO AWARE WORKLOAD

SCHEDULING

A. Scheduling Pipeline of the Polaris Scheduler

Workload scheduling lifecycle represents a set of steps and

interactions that need to be performed to schedule a workload

in a Cloud-Edge-IoT environment. For the simplest example

where a workload equals one pod, the workload scheduling

lifecycle entails the steps necessary to bind the pod to a node,

from the time some deployment controller signals that a new

(replica) pod needs to be created. Figure 4 gives an overview

of the scheduling workflow. The same figure (on the right-

hand side) illustrates the most important steps in the Polaris

Scheduler scheduling pipeline.

The Scheduling Pipeline implements the core phases of

workload scheduling. Similarly to most multi-criteria decision

making (MCDM) online scheduling algorithms, Polaris Sched-

uler also consists of two main phases: the scoring phase and

the binding phase. We further divide these phases into four

main steps: i) filter, ii) score host, iii) select host and iv) bind

pod. Polaris Scheduler implements its scheduling pipeline

based on Kubernetes scheduling framework, extending it with

a number of edge-specific plugins.

In Figure 4, the main steps of the workload scheduling

lifestyle are marked with purple circles and are numbered ac-

cordingly. The circles marked with a star represent continuous

211

Scheduling Pipeline Workflow

Cluster Node

Pod Deployment
Controller

API ServerPersistence
Layer

Polaris
Scheduler

Kubelet Container Registry
Polaris Daemon Node Profiler

Cluster Monitor.
Service

Score Filtered Nodes

Bind Pod Phase

1

2 3

4

Pod added to
active queue

Fetch Nodes from Cache

Filter Sampled Nodes

Select Host Phase

Pod scheduled
successfully

Polaris Scheduler Extension
Plugins

Fig. 4: Overview of workload scheduling lifecycle and key phases of scheduling pipeline.

flow of data. The boxes depicted in purple represent compo-

nents specific to the Polaris Scheduler. Other components are

provided by Kubernetes or another orchestrator. In the simplest

case (workload = pod), the scheduling process starts when

a pod deployment controller creates a new (replica) pod. In

the first step, the controller communicates a (updated) pod

specification (e.g., a YAML file) to the API Server. In the

second step, the API Server makes sure to persist the pod

specification in the Persistence Layer etcd. In the third step,

the Polaris Scheduler is triggered and it puts the pod in the

active queue for scheduling and starts the scheduling pipeline.

The actual steps of the scheduling pipeline are described

subsequently. After a suitable node is found, the scheduler

triggers the API Server which invokes the node’s primary

agent (Kubelet) to spin up the pod (shown as step four).

Finally, there are two additional interactions, which are

crucial for performing pod scheduling at the edge. These are

marked with purple circles and a star. First, we have the

Polaris Daemon, which runs on each node of the cluster,

continuously collecting edge-specific metadata about the node

and delivering it to the Cluster Topology Graph Controller,

which stores this information as Cluster Topology Graph CRD.

Second, the Node Profiler also runs on each cluster node and

continuously executes a sequence of runtime profiling actions

to create a node profile snapshot. This information is also

stored as Cluster Topology Graph CRD. The CRD is cached

for better performance. These specific interactions make the

scheduling pipeline edge aware and the scheduler sensible to

the inherent edge properties and constraints.

Figure 4, on the right-hand side, also zooms in on the

scheduling pipeline and shows the main phases of its workflow.

These phases include: i) Fetch nodes from cache; ii) Filter

phase; iii) Score phase; iv) Select Host phase; and v) Bind pod
phase. The figure also depicts how Polaris Scheduler extends

these phases with a set of custom plugins to make the whole

scheduling pipeline sensitive to the edge-properties and SLO

aware.

In the fetch nodes from cache phase the scheduler retrieves

all the node data from cache. This data includes the nodes

themselves with appropriate locality labels, such as ‘edge-

node’, but also all other metadata which is captured by Polaris

Cloud custom CRDs. Finally, at this point we combine the

latest profiling snapshots with the rest of the metadata.

In the filter phase the scheduler analyzes the cluster nodes,

retrieved in the previous phase, one-by-one, until sampling

rate/scope has been reached. Sample scope is a cluster-specific

metric, which determines the minimum number of nodes that

should be analyzed before moving to the scoring phase. As

seen in the Figure4, Polaris Scheduler provides custom plugins

to make this phase sensitive to edge properties and SLO aware.

In a nutshell, the plugins in this phase are used to filter out

nodes that cannot run the pod. For example, a plugin in this

phase might use the information provided in the Service Graph

to filter out nodes which do not provide required LinkType,

such as 5G network capability.

In the score phase, the nodes are sorted by the Polaris

Scheduler plugins. These plugins are used to rank the nodes

that have passed the filtering phase. At the end of this phase,

the node with the highest score becomes the Select Host.

Currently, our plugins particularly focus on capturing the

locality and proximity properties. In the next section, we

analyze different properties which also need to be considered

by future scoring plugins to enable full-fledged, edge- and

SLO-aware scheduling.

212

TABLE I: Example Polaris Scheduler Plugins for SLO Awareness.

Plugin Name Scheduling Pipeline Phase Functionality Overview

GraphSort Sort Sorts the queued service instances that belong to the same ServiceGraph, according to a
breadth-first traversal of the graph. Instances that belong to different graphs, are sorted
according to their creation timestamps.

ServiceGraphManager PreFilter, Reserve Loads the ServiceGraph of the application that the service instance belongs to and updates
it with the selected node.

NetworkType* Filter Filters out nodes that do not support the LinkType (WiFi, 4G, 5G, etc.) and QualityClass
(10 Mbit/s, 1 Gbit/s, 10 Gbit/s, etc.) demanded by the ServiceLinks of the service instance.

NetworkQoSFilter** Filter Filters out nodes that do not meet the QosRequirements (i.e., throughput, packet delay,
jitter, and packet loss) of the service instances’ ServiceLinks. This entails looking up the
nodes of already scheduled service instances that have a dependency on the current instance
and calculating the QoS of the connection to these nodes.

NodeCost* PreScore, Score Assigns higher scores to cheaper nodes.
PodsPerNode* PreScore, Score, Normalize Score Increase colocation of different services of the same application on a node to reduce latency

between the services.
NetworkQoSScore** Score Assigns higher scores to nodes that are likely to maintain the network requirements for a

prolonged period of time.
WorkloadType** PreScore, Score Uses insights from previous deployments of this workload type to assign more suitable

nodes a higher score.
AtomicDeployment* Permit Ensures that when a new Service Graph is deployed, either all its services are deployed or

none at all. After the initial deployment, i.e., when new service instances are added due
to scaling, this plugin does nothing.

When the pipeline reaches the Select Host phase, a host

node has already been selected and the scheduler waits for

the node to prepare for the arrival of the pod. This phase

exists to prevent race conditions while the scheduler waits for

the bind to succeed. Additionally, Polaris Scheduler uses this

phase to update workload’s service graph. This has to be done

in this phase, as the scheduling is done one pod at a time and

we need to propagate latest version of the service graph for

each pod. In case the binding phase fails, Polaris Scheduler

provides mechanisms to rollback the service graph to the last

stable version.

Finally, the Bind Pod phase runs plugins that are used

to perform any work required before the pod is bound. For

example, a plugin may provision a virtual sensor on the target

node before binding a pod to run on it.

B. Polaris Scheduler Extension Plugins

To realize the SLO-Aware scheduling behaviour Polaris

Scheduler takes advantage of Kubernetes’ highly-flexible

scheduling extension points. These are essentially a set of

hooks, which can be used to extend or customize the schedul-

ing lifecycle. To this end, Polaris Scheduler defines a set of

plugins which capture SLO specific behaviour and integrate it

with the scheduling lifecycle.

Table I lists most important examples of the plugins

added by Polaris Scheduler. Generally, we categorize Polaris

Scheduler plugins into static-data and dynamic-data plugins,

depending on the type of data they operate with. Further,

based on their general optimization goal or constraint type,

we can classify plugins into the ones that focus on optimiz-

ing workload’s performance (should be generally applicable

to edge workloads) and the ones that specifically facilitate

meeting SLOs. For example, in Table I Polaris Scheduler

plugins, which are marked with an asterisk (‘*’) operate on

mostly static data and aim to increase the performance of edge

workloads. The plugins marked with ‘**’ operate on data that

may change dynamically and are directly related to SLOs, such

as throughput, packet delay, jitter, and packet loss.

C. Properties for SLO aware scheduling

As previously discussed, the edge has many specific prop-

erties which are not typical for the Cloud. In this regard,

next we highlight examples of such properties, which need

to be considered by specific plugin objectives to achieve fully

fledged, SLO aware and edge aware scheduling. The Polaris

Scheduler is currently taking into consideration locality, but

the road-map of the project includes at least all the following:

• Locality: The distribution of the edge fabric through the

geographical space implies that applications can require

that the deployment of their containers is done at specific

geographic locations. Therefore, it can be required to the

scheduler that some data is stored next to the processor

units that have use it, and not in a cloud storage far from

them.

• Device: The heterogeneity of devices the the edge re-

quires a careful specification of the requirements for the

deployment in terms of hardware capacity. In this regard,

given the constrained capacities of some edge devices,

it can be required to the scheduler to deploy on certain

hardware that is specifically proficient for the task, even

if in general terms is not as suitable as other available

devices.

• Mobility: Some edge devices can be mobile, in this

regard, some application can require that the deployment

hardware moves to a certain region or that it keeps

moving around a certain area. There are applications that

require to sense specific areas, where might not be any

sensor. This type of SLOs can require the scheduler to

only deploy the task to the hardware able to move to that

specific location.

213

• Availability: Edge devices are, in general, constrained.

Therefore their availability depends on two main fac-

tors: energy and connectivity. The deployment might

require a minimum time of availability for the application,

therefore, the device is required to have enough energy.

Similarly, some edge devices might have only network

connection during a specific period of the day, which

needs to be taken into account for the deployment.

Therefore, the specific availability of the resource will

be required to be given as an SLO in order to balance

the device requirement with its availability.

• Network: Similarly as for the devices, a manifold of

different networks can connect the edge devices, and each

with its own idiosyncrasies. In this sense, a deployment

can specify to the scheduler a specific type of connection

for its application, for instance, to ensure enough band-

width or that the latency is below a certain threshold.

• Provider: The edge tier is composed by different

providers, for business or economic reasons a deployment

can have a preference over a specific provider. This is

business oriented, however, it can be very useful from that

point of view in order to enable emerging applications.

• Energy efficiency: Given the heterogeneity of devices

and topologies of the edge tier, there can be several

configurations that match the deployment requirements.

In this sense, the user can chose the configuration that is

more efficient in terms of energy consumption, aiming at

reducing its deployment cost or to increase the time of

availability for the deployment. Therefore, the scheduler

requires such a plugin in order to offer this type of SLO.

• Sustainability: Given the urgent climatic emergency, some

deployments can prioritize the use of configurations with

characteristics such as: the lowest carbon footprint, the

lowest energy consumption or the one that can be shared

and re-used.

It is clear that these plugins can have some conflicts between

them, so that optimizing the device does not matches with

having the required network. Such conflicts can be mitigated

by associating weights with the plugins using the Launch

Configuration Provider (cf. Section III and Figure 1).

To sum up, these are properties that the Polaris Scheduler

aims at incorporating as plugins in the near future. With the

development of more CEI systems and the evolution of the

society needs more of them can be added to the road-map.

V. RELATED WORK

Container Schedulers: Kubernetes default scheduler is an

online scheduler, which at its core implements a greedy multi-

criteria decision making (MCDM) algorithm. This scheduling

algorithm performs well in the typical Cloud environments, but

it lacks features which are needed for scheduling containers

in edge environments, i.e., where compute nodes are resource

constrained, network connections can be unreliable, compute

fabric is highly heterogeneous, device nodes are geographi-

cally dispersed, and the infrastructure is highly dynamic (de-

vices can suddenly come and go). Additionally, other container

schedulers, such as Docker Swarm and Apache Mesos and

Apache Hadoop YARN, implement a similar greedy MCDM

algorithm. A key phase of MCDM is the so-called scoring

phase. In that phase, the algorithm calculates the score of fea-

sible node, and selects the highest scoring node for scheduling.

Therefore, our general approach is complementary to these

approaches as we also rely on a similar algorithm, particularly

extending the scheduling pipeline with a set of plugins. These

plugins make the scheduling pipeline sensitive to the edge

properties and SLO aware.

Service Placement Problem (SPP): In the context of Service

Placement Problems (SPP), the works usually formulate the

task as an optimization problem and an algorithm is imple-

mented to solve an instance of the problem heuristically by

leveraging assumptions within the system mode. For example,

Wang et al. [11] developed a reinforcement-learning-based

hierarchical service tree placement strategy, aiming to optimize

the net utility, defined in their work as achieved utility minus

network congestion. Placing services also involves disseminat-

ing data. Aral and Ovatman [12] handled it, in the context of

edge computing, as a facility location problem. They covered

the dynamic creation, replacement, and removal of replicas,

where the decisions were guided by the continuous monitoring

of data requests from the edge nodes. We do not compete with

them, as we do not propose a novel algorithm or solution to

the optimization problem.

QoS-aware scheduling: Regarding QoS-aware scheduling,

Delimitrou et al. [13] developed Paragon, a recommendation

system in the context of data centers, based on collaborative

filtering techniques, to classify unknown workload and assign

the best configuration according to previously scheduled ap-

plications. Still, in the frame of data manipulation, Cardellini

et al. [14] propose a QoS-aware and self-adaptive scheduler

as an extension of Storm. The scheduler monitors the data

rate exchanged, and thanks to a distance-based selection

mechanism, proposes to schedule applications with complex

topologies in geographically distributed environments.

Another stream of research for QoS-aware scheduling in-

volves the IoT scenario. In this regard, Li et al. [15] proposed

a three-layer QoS scheduling model for service-oriented IoT,

based on the use of self-defined metrics for each layer and

Markov Decision Model solutions. Hong et al. [16] developed

a QoS-aware network resource management framework to ob-

tain a better bandwidth control with containers for bandwidth-

sensitive applications. They propose three scheduling policies,

i.e., proportional share scheduling, minimum bandwidth reser-

vation, maximum bandwidth limitation, that can be combined

to improve the network usage. Murtaza et al. [17] introduced

a QoS-aware service provisioning for Internet of Everything

(IoE) tasks. The approach analyzes the various service types

of IoE requests and presents strategies to allocate the most

appropriate available fog resource. Scarlett et al. [18] first

formulate a formal model for fog resources and applications,

defining the fog landscape scenario. They then propose an

optimization solution for the Fog Service Placement Problem,

solved as an integer linear programming model, with the aim

214

of maximizing the utilization of the fog landscape given the

application’s requirements, considering the active involvement

of the cloud resources. Brogi et al. first [19] developed a

prototype for better deploying fog applications, estimating

their QoS-assurance and Fog resource consumption consid-

ering latency and throughput in their simulations. Then, they

extended the work, including a model and predictive analytics

to predict resource consumption and cost [20], [21].

Workload scheduling on hybrid cloud-edge/cloud-fog infras-
tructures: Towards the cloud-edge continuum scheduling, Fu

et al. [22] proposed a reinforcement-learning-based online re-

sources manager and load-aware microservice scheduler. The

system’s goal is to ensure optimization of both computational

and network resources for microservices while guaranteeing

the QoS. A reinforcement learning technique is also proposed

by [23] to place Virtual network functions in the cloud-edge

continuum optimally. Mahmud et al. [24] developed a service

placement for Industry 4.0 IoT systems in a fog environment,

proposing a heuristic methodology. This work considers the

context IoT devices, for example, the data size and sensing

frequency, the details of various industry 4.0-oriented appli-

cations (I4OAs), including execution model, time and space

complexity, dependency, and resource requirements.

Workload scheduling in mobile cloud: Mobile edge com-

puting scheduling has to deal with delays caused by users’

mobility, which happens when they move away from serving

edge clouds. Wang et al. [25] solved it as a coordination

problem using the Markov decision process framework. Fur-

thermore, they proposed a reinforcement-learning-based on-

line microservice coordination algorithm to learn the optimal

strategy. Tian et al. [26], in their paper, they target the

Cloudlet platform proposing a scheduling workflow with QoS

enhancement. They solved this as a multi-objective function.

Chunlin et al. [27] inspect how to guarantee QoS for users of

mobile devices, analyzing the cost and the benefits of mobile

cloud, proposing to solve the multiple mobile/cloud context

for service scheduling as a utility optimization problem. Wang

et al. [28] propose a scheduling algorithm in Mobile Cloud

Computing (MCC) for obtaining higher profit and low energy

consumption. They consider multi-tasks with time constraints,

and they map the problem with a heuristic algorithm based on

Ant Colony Optimization.

The approaches described mainly deal with specific prob-

lems, designing accurate algorithms that solve a limited spec-

trum of cases. In our proposal, instead, the scope is broader.

We present the design of a complete framework that can

operate in the whole Cloud-Edge-IoT continuum, including

the capture of the system’s intrinsic properties and working on

every Kubernetes-based (or any other orchestrator) cluster.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented Polaris Scheduler, which is

a novel scheduling framework that enables edge sensitive

and SLO aware scheduling in Cloud-Edge-IoT Continuum.

Polaris Scheduler is being developed as a part of Linux

Foundation’s Centaurus project. It brings SLO awareness and

edge sensitivity to the Cloud-Edge-IoT continuum. Polaris

Scheduler implements a Service Graph, which models work-

load’s components and their interactions. It provides enough

metadata about the workload to the scheduling pipeline to

make it possible to optimally schedule the workload in at the

edge. Polaris Scheduler introduces a Cluster Topology Graph,

which maintains the cluster- and infrastructure-specific states

in order to make the scheduling pipeline edge sensitive and

SLO aware. To keep these states up to date, in face of a

highly dynamic Cloud-Edge-IoT continuum, Polaris Scheduler

implements an Infrastructure Monitoring Service that works in

cooperation with Polaris Daemon and Node Profiler. Finally,

Polaris Scheduler implements a set of extension plugins for

enriching the workload scheduling pipeline. These plugins are

responsible for implementing edge- and SLO-awareness in the

scheduling pipeline. For example, by using its specific plugins,

Polaris Scheduler enables reasoning about the locality and

proximity properties.
In the future, we aim to continue developing Polaris Sched-

uler as a part of Linux Foundation’s Centaurus Project9. We

plan to continue enriching its plugins ecosystem, to include

support for considering other infrastructure properties, which

are relevant in the Cloud-Edge-IoT continuum. Another line

of research will include, adding support for sustainable and

energy-aware scheduling. Finally, we aim to provide better

integration of scheduling SLOs with the elastic scaling strate-

gies, to provide better support for elasticity, but also SLO

violations prevention and mitigation at the edge.

REFERENCES

[1] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[2] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
X. Ding, D. Vij, and Y. Xiong, “A novel middleware for efficiently im-
plementing complex cloud-native slos,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[3] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC),
2018, pp. 373–377.

[4] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Pro-
visioning software-defined iot cloud systems,” in 2014 international
conference on future internet of things and cloud. IEEE, 2014, pp.
288–295.

[5] S. Nastic et al., “A Middleware Infrastructure for Utility-based Provi-
sioning of IoT Cloud Systems,” in The First IEEE/ACM Symposium on
Edge Computing, 2016.

[6] Futurewei Technologies Inc., “Arktos open source project reposi-
tory,” URL: https://github.com/futurewei-cloud/arktos, 2020, [Online;
accessed April-2020].

[7] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
X. Ding, D. Vij, and Y. Xiong, “Slo script: A novel language for
implementing complex cloud-native elasticity-driven slos,” in 2021 IEEE
International Conference on Web Services (ICWS), 2021.

[8] “Kubernetes,” URL: https://kubernetes.io/, 2020, [Online; accessed
April-2020].

[9] S. Nastic, M. Voegler, C. Inziger, H.-L. Truong, and S. Dustdar, “rtGov-
Ops: A Runtime Framework for Governance in Large-scale Software-
defined IoT Cloud Systems,” in Mobile Cloud 2015, 2015.

[10] S. Nastic, G. Copil, H.-L. Truong, and S. Dustdar, “Governing elastic
iot cloud systems under uncertainty,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, pp. 131–138.

9https://www.centauruscloud.io

215

[11] Y. Wang, Y. Li, T. Lan, and N. Choi, “A reinforcement learning approach
for online service tree placement in edge computing,” in 2019 IEEE 27th
International Conference on Network Protocols (ICNP). IEEE, 2019,
pp. 1–6.

[12] A. Aral and T. Ovatman, “A decentralized replica placement algorithm
for edge computing,” IEEE transactions on network and service man-
agement, vol. 15, no. 2, pp. 516–529, 2018.

[13] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp.
77–88, 2013.

[14] V. Cardellini et al., “On qos-aware scheduling of data stream appli-
cations over fog computing infrastructures,” in IEEE Symposium on
Computers and Communication (ISCC), 2015, pp. 271–276.

[15] L. Li, S. Li, and S. Zhao, “Qos-aware scheduling of services-oriented
internet of things,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1497–1505, 2014.

[16] C.-H. Hong, K. Lee, M. Kang, and C. Yoo, “qcon: Qos-aware network
resource management for fog computing,” Sensors, vol. 18, no. 10, p.
3444, 2018.

[17] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya,
“Qos-aware service provisioning in fog computing,” Journal of Network
and Computer Applications, vol. 165, p. 102674, 2020.

[18] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC). IEEE, 14.05.2017 - 15.05.2017,
pp. 89–96.

[19] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[20] A. Brogi, S. Forti, and A. Ibrahim, “Deploying fog applications: How
much does it cost, by the way?” in Proceedings of the 8th International
Conference on Cloud Computing and Services Science (CLOSER’18),

2018.

[21] Predictive analysis to support fog application deployment. Wiley, 2019.

[22] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo,
“Qos-aware and resource efficient microservice deployment in cloud-
edge continuum,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2021, pp. 932–941.

[23] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-
to-end performance-based autonomous vnf placement with adopted rein-
forcement learning,” IEEE Transactions on Cognitive Communications
and Networking, vol. 6, no. 2, pp. 534–547, 2020.

[24] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-
aware placement of industry 4.0 applications in fog computing environ-
ments,” IEEE Transactions on Industrial Informatics, vol. 16, no. 11,
pp. 7004–7013, 2019.

[25] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, 2019.

[26] W. Tian, R. Gu, R. Feng, X. Liu, and S. Fu, “A qos-aware workflow
scheduling method for cloudlet-based mobile cloud computing,” in
2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2019, pp. 164–169.

[27] L. Chunlin, Y. Xin, Z. Yang, and L. Youlong, “Multiple context based
service scheduling for balancing cost and benefits of mobile users and
cloud datacenter supplier in mobile cloud,” Computer Networks, vol.
122, pp. 138–152, 2017.

[28] T. Wang, X. Wei, C. Tang, and J. Fan, “Efficient multi-tasks scheduling
algorithm in mobile cloud computing with time constraints,” Peer-to-
Peer Networking and Applications, vol. 11, no. 4, pp. 793–807, 2018.

216

