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A novel approach implements cloud-supported, real-time data analytics in 

edge computing applications. The authors introduce their serverless edge-

data analytics platform and application model and discuss their main design 

requirements and challenges, based on real-life healthcare use case scenarios.

W ith the increasing growth of the Inter-
net of Things (IoT) and edge comput-
ing,1-3 an abundance of geographically 

dispersed computing infrastructure and edge 
resources remain largely underused for data 
analytics applications. At the same time, the 
value of data becomes effectively lost at the edge 
by remaining inaccessible to the more powerful 
data analytics in the cloud due to networking 
costs, latency issues, and limited interoper-
ability between edge devices. The reason for 
both of these shortcomings is that today’s cloud 
models do not optimally support data analytics 
at the volume and variety of data originating 
from sensors and edge devices, typically char-
acterized by high latencies and response times. 
There is a hard line between the edge and the 
cloud parts of analytics applications in terms of 
responsibilities, design, and runtime consider-
ations. While contemporary solutions for cloud-
supported, real-time data analytics mostly 
apply analytics techniques in a rigid bottom-up 
approach regardless of the data’s origin,4,5 doing 
data analytics on the edge forces developers to 
resort to ad hoc solutions specifically tailored 
to the available infrastructure. The process is 

largely manual, task-specific, and error-prone 
and usually requires good knowledge of the 
underlying infrastructure. Consequently, when 
faced with large-scale, heterogeneous resource 
pools, performing effective data analytics is 
difficult, if not impossible.

A promising approach to address these issues 
is the serverless computing paradigm. Serverless 
computing is an emerging cloud-based execu-
tion model in which user-defined functions are 
seamlessly and transparently hosted and man-
aged by a distributed platform.6 There are multi-
ple commercial and open source implementations 
of serverless platforms, such as Amazon Web 
Services Lambda (see http://aws.amazon.com/
lambda), Apache OpenWhisk (http://openwhisk.
org), or OpenLambda.6 The benefits of the server-
less model become especially evident in the con-
text of the described cloud and edge model, as 
both models seek to mitigate inefficient, error-
prone, and costly infrastructure and application 
management.

In this article, we propose a unified cloud 
and edge data analytics platform, which extends 
the notion of serverless computing to the edge 
and facilitates joint programmatic resource and 
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analytics management. We intro-
duce a reference architecture for our 
platform and a serverless applica-
tion execution model, which enable 
uniform development and operation 
of analytics functions, thereby free-
ing users from worrying about the 
complexity of the underlying edge 
infrastructure. Finally, we outline 
a set of research challenges and 
design principles to serve as a road 
map toward a fully-fledged platform 
for cloud and edge real-time data 
analytics.

Use Case Scenarios
To better understand the need for 
distributed cloud and edge process-
ing, we present two scenarios from 
IoT mobile healthcare (mHealth) and 
discuss holistic data analytics.

Use Case 1: Measuring Human 
Vital Signs in Disasters
In case of a major disaster, prompt 
paramedic attention is crucial to save 
people’s lives. An extension of major 
disaster protocol includes wearable 
biosensors that can be attached to 
injured people by on-site medics, 
providing critical information about 
the patient’s medical condition and 
helping determine a priority queue 
for further patient processing.

As soon as the sensors are 
attached, they start emitting data to 
nearby portable edge devices, such 
as a smartphone. Such devices per-
form only basic, lightweight ana-
lytics, such as triage decision tree, 
to determine the overall stability 
of the injured person and inform 
onsite medics. Once a network con-
nection becomes available, selected 
data can be transferred to the cloud 
for more complex analysis that will 
predict and prioritize more pre-
cisely the patients’ treatments, help-
ing improve coordination between  
hospitals, optimize the time needed 
to reach a hospital, and provide 
timely information about patients’  
conditions.

Use Case 2: Measuring Human 
Vital Signs in Everyday Life
In this use case, a wearable biosen-
sor measures a patient’s vital signs 
during everyday life activities. 
Sensors continuously stream data 
of electrocardiogram readings to a 
nearby edge device that performs 
simple data analytics to monitor 
the patient’s health condition. If an 
anomaly such as a heart failure is 
detected, the system immediately 
notifies medical emergency services. 
Preprocessed and filtered data are 
subsequently sent to the cloud, where 
comprehensive data analytics can be 
performed to gain better insight into 
the patient’s overall condition, and 
help with diagnostics.

Holistic Data Analytics  
in mHealth
The presented use cases demonstrate 
the need for consolidating cloud- 
and edge-based data analytics tech-
niques. To enable prompt reactions 
to a patient’s changing health condi-
tion, low-latency algorithms should 
process the data at the edge in real-
time. Conversely, detecting patterns 
in large amounts of historic patient 
data requires analytics techniques 
that depend on cloud storage and 
processing capabilities. In an archi-
tecture that combines cloud and edge 
data analytics, edge devices should 
act as a data gateway. Preprocessed 
and filtered data can be sent to the 
cloud, where they become persistent 
and highly available for compute-
intensive analytics. To consolidate 
different techniques, and transpar-
ently handle data management, a 
holistic data analytics platform that 
unifies cloud and edge resources is 
needed.

Serverless Platform
Our main objective is to provide a 
full-stack platform for supporting 
real-time data analytics across cloud 
and edge in a uniform manner. The 
key role of the distributed cloud and 

edge platform is to facilitate auto-
mated management of the underlying 
resource pool and optimal placement 
of analytics functions to support 
the envisioned serverless execution 
model. This approach enables com-
bining the benefits of the edge (lower 
response time and heterogeneous 
data management) with the computa-
tional and storage capabilities of the 
cloud. For example, time-sensitive 
data, such as life-critical vital signs, 
can be analyzed at the edge, close to 
where data are generated instead of 
being transported to the cloud for 
processing. Alternatively, selected 
data can be forwarded to the cloud 
for further, more powerful analysis 
and long-term storage.

Platform Use  
and Architecture Overview
Figure 1a shows a high-level view of 
the platform and the main top-down 
control process (left) and bottom-up 
data management and delivery pro-
cess (right). The proposed serverless 
data analytics paradigm is particu-
larly suitable for managing differ-
ent granularities of data analytics 
approaches bottom-up. This means 
that the edge focuses on local views 
(for example, per edge gateway), while 
the cloud supports global views, that 
is, combining and analyzing data 
from different edge devices, regions, 
or even domains. Data are collected 
from the underlying devices and 
delivered to the applications via con-
sumption APIs. More importantly, 
the data analytics can be performed 
on edge nodes, cloud nodes, or both, 
and delivered from any of the nodes 
directly to the application, based on 
the desired view. Moreover, the top-
down control process allows decou-
pling of application requirements 
(the what) from concrete realization 
of those requirements (the how). This 
allows developers to simply define 
the analytics function behavior 
and data-processing business logic 
and application goals (for example, 
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regarding provisioning) instead of 
dealing with the complexity of dif-
ferent management, orchestration, 
and optimization processes.

Figure 1b shows the platform’s core 
architecture. We detail the layers of 
the architecture in the following.

The analytics function wrapper 
and APIs layer. This layer focuses 
on executing and managing user-
provided data analytics functions —  
for example, delivering required data  
to the function and creating the 

resulting endpoints. To this end, this 
layer wraps the analytics functions 
in executable artifacts such as Linux 
containers and relies on the underly-
ing layers to perform concrete run-
time actions and execution steps.

The orchestration layer. This layer 
interprets and executes user-defined 
real-time analytics functions, re-
quire ments, and configuration mod-
els. It acts as a gluing component, 
bringing together an application’s 
configuration model, user-defined 

analytics functions, and the plat-
form’s runtime mechanisms. There-
fore, the orchestration layer receives 
the application configuration direc-
tives, in terms of high-level objectives 
such as optimizing network latency. 
It interprets and analyzes these goals 
and decides how to orchestrate the 
underlying resources, as well as the 
user-defined functions, by invoking 
the underlying runtime mechanisms. 
To this end, this layer contains micro 
(edge-based) and macro (cloud-based) 
orchestration and control loops. For 
example, it can use the scheduling 
and placement mechanisms to deter-
mine the most suitable node (cloud or 
edge) for an analytics function to re-
duce the network latency.

The runtime mechanisms layer. 
This is an extensible plug-in layer, 
providing mechanisms to support 
executing the actions initiated by 
the orchestration layer. The deploy-
ment, scheduling, elasticity, and 
basic reasonable defaults for the 
quality of service (QoS) are core run-
time mechanisms. More precisely, 
the platform determines the mini-
mally required elastic resources, 
provisions them, deploys, and then 
schedules and executes analytics 
functions, which will satisfy QoS 
requirements. On the other hand, 
the governance, placement, fault 
tolerance, and extended QoS mecha-
nisms are optional. For example, in 
some cases, the data could be con-
fidential and some geographical 
regions should be excluded. Plac-
ing the functions closer to the data 
and deciding whether to use cloud 
or edge resources could improve the 
QoS. Additionally, having a k-fault-
tolerant platform that will mitigate 
failure risks to acceptable levels 
could further improve the QoS.

Serverless Stream Model
To facilitate the serverless execu-
tion of edge real-time data ana-
lytics applications, we propose an 

Figure 1. Cloud and edge real-time data analytics platform. (a) High-level 
usage context. (b) Internal software architecture.
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extension of the traditional stream 
processing model. In our server-
less stream model (see Figure 2), 
the transformation function is the 
core concept and encapsulates user-
defined data analytics logic to pro-
cess data along the stream. These 
functions are then composed into 
topologies that enable complex 
data processing applications. In our 
model, we consider streams as first-
class citizens — that is, streams are 
defined through all of the presented 
concepts, as well as function wrap-
pers and stream contracts.

The wrapper is responsible for 
encapsulating the transformation 
functions and exposing a thin API 
layer, enabling the analytics function 
layer to treat functions as microser-
vices. This lets our system transpar-
ently schedule and deploy functions 
using container-based deployment 
strategies, and compose functions 
to complex topologies. For stateful 
functions, these wrappers also pro-
vide implicit state management. The 
wrapper transparently handles state 
replication and migration, and access 
to a function’s state is controlled via 
the exposed API.

The contract is a high-level de-
scription of how the platform man-
ages deployment and execution of 
streams and their functions. Spe-
cifically, a contract gives a user 
fine-grained control over the plat-
form’s runtime mechanisms — that 
is, placement and scaling policies, 
governance rules, and QoS require-
ments. A contract is divided into 
sections, where each section speci-
fies a respective runtime mecha-
nism. The placement section allows 
control over how analytics func-
tions are deployed across the infra-
structure, such as which cloud or 
edge resources to use. The scaling 
section allows control over elas-
ticity strategies — that is, how the 
platform should adapt to varying 
workloads. Governance rules allow 
additional definition of restrictions 

regarding security or privacy, such 
as the exclusion of certain geo-
graphical regions in the distributed 
infrastructure. The QoS section al-
lows control over QoS requirements 
the platform should respect, for ex-
ample, maximum stream latency 
or minimum stream throughput. 
Unless explicitly defined in respec-
tive sections, the platform will en-
act sane defaults for each runtime 
mechanism.

Design Requirements  
and Challenges
This section outlines the design re-
quirements and challenges to realize 
our real-time data analytics platform 
and its main runtime mechanisms in 
edge.

Provisioning Data  
Analytics Functions and  
Edge Resources
The serverless paradigm and appli-
cation execution model undoubt-
edly has the potential to offer a wide 
range of benefits for provisioning 
and managing real-time edge data 

analytics functions. Unfortunately, 
due to the inherently different nature 
of edge infrastructure, for exam-
ple, in terms of available resources, 
networks, and so on, provisioning 
solutions designed for cloud-based 
serverless landscapes are hardly 
applicable out of the box in this new 
computing environment. Fundamen-
tal architecture and design assump-
tions behind such approaches need 
to be reexamined and specifically 
tailored for the edge infrastructure 
to support seamless provisioning of 
both infrastructure resources and 
application components.

In our previous work, we de-
veloped models7 and middleware8 
that enable provisioning edge/IoT 
resources and applications across 
large-scale IoT and edge deploy-
ments. Although, these solutions 
offer numerous advantages to the 
application developers and opera-
tions managers — such as a logically 
centralized point of operation in a 
geographically dispersed infrastruc-
ture, uniform interaction patterns 
with both cloud and edge resources,  

Figure 2. Serverless stream application model. The transformation function is 
the core concept and encapsulates user-defined data analytics logic to process 
the stream data.
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and utility-based resource consump-
tion — there’s still a number of chal-
lenges to address to enable our vision 
of a serverless real-time data analyt-
ics platform for the edge. These in-
clude fully automated provisioning 
solutions, where user interaction is 
limited to providing high-level poli-
cies and goals that need to be ful-
filled by the platform; design and 
implementation of provisioning and 
orchestration mechanisms for the 
edge network (for example, based 
on network function virtualization 
slicing or software-defined net-
works); and models and techniques 
for secure edge-resource negotiation 
based on smart contracts and Block-
chain technologies.

Availability and Scheduling of 
Loosely Coupled Edge Resources
The analytics wrapper and APIs layer 
(see Figure 1b) is an abstraction level 
that addresses management of data 

analytics functions. These abstrac-
tion concepts that arrive at differ-
ent speeds stochastically must be 
mapped to real runtime mechanisms. 
This orchestration and configuration 
cannot occur in an easy and predict-
able manner, because of the limited 
resources in the runtime mecha-
nisms layer. If there exist unlimited, 
tightly coupled resources as in the 
cloud, then mapping is ideal because 
each new function will be mapped to 
a new resource runtime mechanism 
in the described monitor, analyze, 
plan, and execute loop.

Resource availability in edge 
computing complicates the execu-
tion of the planned activities by the 
orchestration layer. Multiple meth-
ods can solve the problem of limited 
available resources and required pro-
cessing, communication, or storage 
demands, such as inserting queues 
in front of each resource in the pool, 
or a common (grouped) queue.

Scheduling tasks over provisioned 
resources is by itself a challenge, as 
it is an NP-hard, real-time problem. 
Scheduling in the edge’s loosely cou-
pled infrastructure is even more chal-
lenging than for the cloud’s tightly 
coupled one. Even if the edge provi-
sions elastic resources, the edge’s dis-
tribution will generate huge network 
latency because of its slower wide 
area network (WAN) compared to the 
cloud’s high-speed LAN. Therefore, 
the platform should provide light-
weight algorithms for optimizing the 
real-time decision making for sched-
uling, considering multiple conflict-
ing criteria, such as energy efficiency, 
dependability, real-time response, 
resiliency, reliability, time-predict-
ability, fault tolerance, and system 
cost. To reduce the tradeoff between 
the acceptable schedule that can be 
calculated fastest (in real time), a foot-
print analyzer can be implemented, 
whose historical outputs can be used 

Related Work in Scalable Data Analytics Applications

Traditionally, scalable data analyt-
ics applications have been realized 

with cloud-supported, distributed, data-
stream processing systems. Maintaining 
low end-to-end latencies under high data 
velocity is a major challenge for such sys-
tems, particularly in large-scale Internet 
of Things scenarios. Systems like Stream-
Cloud1 and Twitter Heron2 were devel-
oped to handle massive amounts of data, 
using concepts such as auto-paralleliza-
tion of stream operators, clustering, and 
elastic scaling. While these approaches 
address scalability issues, they don’t 
consider edge-specific features such as 
locality awareness, which are crucial for 
achieving low-latency, real-time analytics.

Different approaches extended tra-
ditional stream processing with novel 
algorithms for deploying and scheduling 
operators at the edge. For example, Apos-
tolos Papageorgiou and colleagues ex-
tended the stream topology deployment 

algorithm of Apache Storm.3 In particular, 
their deployment optimization approach 
incorporates quality of service (QoS) 
metrics of topology-external interactions 
to reduce communication latencies with-
in stream-processing topologies. Valeria 
Cardellini and colleagues propose a simi-
lar approach, where the scheduling algo-
rithm takes into account network QoS 
metrics, such as latency, between stream 
operators.4

Only a few efforts have been made to 
develop novel architectures for data analyt-
ics platforms in the edge. Mahadev Satyana-
rayanan and colleagues propose GigaSight, 
a hybrid architecture for computer-vision 
analytics based on cloudlets.5 In GigaSight, 
cloudlets filter and process mobile video 
streams in near real time. Only process-
ing results, such as recognized objects, and 
corresponding metadata are sent to the 
cloud, thereby reducing end-to-end laten-
cies as well as bandwidth usage.
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as heuristics to predict edge resource 
behavior without interrupting real-
time data analytics.

Resources Virtualization  
and Heterogeneous 
Infrastructure Mapping
Most of the data collection devices 
(sensors) in the infrastructure re-
source pool are abstracted by their 
virtualized model in the resources 
abstraction layer. The main idea of 
the model is to transfer data and re-
alize the data analytics functions via 
cloud/fog computing servers.

We address the autonomous func-
tion of IoT devices as a challenge 
that our model will face. Autono-
mous processing means that certain 
data analytics algorithms are also 
performed on a lower level — that is, 
the processing is located closer to the 
source (in the edge). This leads to a 
dew computing design, including a 
dew server (edge device) on the path 
between the IoT devices/sensors and 
the cloud. Our model implements the 
autonomous function by mapping 
the main data analytics functions 
directly to the IoT devices.

In this context, an open chal-
lenge is to solve the interoperability 
and integration between different 
device implementations on the infra-
structure level. Our resource virtu-
alization layer directly addresses 
these issues, because each device is 
presented by its functions.

Finally, portability on the lower 
layer means to transfer defined func-
tions between various devices. For 
example, this is addressed by the 
fault tolerance and elasticity runtime 
mechanisms to replicate or enable a 
spare device that will continue per-
forming the defined functions if one 
resource fails or share the load if the 
load increases.

Rapid Elasticity at the Edge
Cloud-based serverless platforms use 
commodity infrastructure and have 
small footprint and short execution 

duration, combined with statisti-
cal multiplexing of a large number 
of heterogeneous workloads over 
time.9 Edge, on the other hand, has 
different characteristics because of 
its different infrastructure — that is, 
infrastructure deployment and its 
geographic dispersion, the topology 
of network connectivity, and local-
ity-awareness. One challenge is the 
discoverability of resources. Given 
the number of heterogeneous devic-
es, standard discovery mechanisms 
could become burdened with mas-
sive workloads; as a solution, and 
to ensure elasticity, dynamic strate-
gies should be in place for sharing 
resources. Another perspective is the 
geographic dispersion, where edge 
devices are scattered around the 
network and have limited capacity. 
A framework should be established, 
which can dynamically select appro-
priate devices in regard to proximity 
to data sources, while considering 
latency and mobility. The framework 
should differentiate critical and non-
critical functions by setting priori-
ties to the services in the case of a 
heavy workload in a single location. 
The topology of the network con-
nectivity represents another issue 
in rapid provisioning of processing 
capabilities. It should allow imper-
ceptible handling of any increased 
workload without increasing laten-
cies and cope with heterogeneous 
devices, while maintaining a secure 
environment. As a result, the com-
munication protocols among the 
nodes should be carefully selected 
and established.

Data Management
Apart from the five Vs (volume, ve-
locity, variety, veracity, and value)  
for big data analytics, some real-
time analytics applications require 
additional data management, which 
should be performed in edge, as well. 
The data must be preprocessed before 
going through the transformation 
functions. Further, data ingestion, 

transcription services, deduplica-
tion, and natural language-process-
ing algorithms are required.

Many real-time analytics, such 
as our first use case, require updat-
ing the model in real time accord-
ing to the shorter data horizon. This 
requirement refreshes the incremen-
tal learning algorithms, which will 
compensate the lack of edge resources 
compared to the cloud. On the other 
hand, the lack of storage capacity is 
compensated with the smaller data 
obsolescence — that is, prediction 
upon smaller data series. The sec-
ond use case is a good representative 
of this. In both use cases, the data 
can be forgotten or destroyed after 
being processed, which will mitigate 
the risk of data leakage and bring 
the data privacy and security to an 
acceptable level. For other real-time 
analytics, such as longer data hori-
zons or data obsolescence, the same 
challenges remain, as is the case in 
the cloud.

To tackle these requirements, one 
challenge is to design a whole work-
flow of dependent processes in the 
orchestration layer. Placement, QoS, 
and fault tolerance should be added 
to the core runtime mechanisms for 
these types of real-time analytics, as 
struggling or failure of some execu-
tion nodes could lead to service-level 
agreement violations.

Despite the elastic computing 
power of cloud, along with high-

speed networks, real-time analyt-
ics in the novel edge computing 
landscape are becoming ever-more 
challenging. Our platform facili-
tates real-time data analytics over 
cloud and edge computing in a 
uniform manner. The proposed 
serverless stream model makes 
transparent the underused under-
lying heterogeneous edge infra-
structure and enables easier and 
more intuitive development of vari-
ous real-time analytics functions, 
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without worrying about nonfunc-
tional requirements.

Our model will switch the cur-
rent view of centralized premise and 
cloud real-time analytics into more 
distributed, edge, ubiquitous, real-
time analytics, in which the data’s 
value won’t be lost at the edge and 
all computing layers will be used 
evenly. Our vision is that all com-
puting layers work together like a 
team, without making the cloud the 
team’s most important player. Our 
platform will act as a team manager 
that will follow the road map toward 
a fully-fledged platform for cloud 
and edge real-time data analytics. It 
will overcome the challenges of pro-
visioning data analytics functions at 
edge resources, making them highly 
available and rapidly elastic, and 
processing and managing the data in 
real time without (or before) passing 
it to the cloud.  
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